Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 295(27): 9052-9060, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32414844

ABSTRACT

V(D)J recombination is initiated by the recombination-activating gene protein (RAG) recombinase, consisting of RAG-1 and RAG-2 subunits. The susceptibility of gene segments to cleavage by RAG is associated with gene transcription and with epigenetic marks characteristic of active chromatin, including histone H3 trimethylated at lysine 4 (H3K4me3). Binding of H3K4me3 by a plant homeodomain (PHD) in RAG-2 induces conformational changes in RAG-1, allosterically stimulating substrate binding and catalysis. To better understand the path of allostery from the RAG-2 PHD finger to RAG-1, here we employed phylogenetic substitution. We observed that a chimeric RAG-2 protein in which the mouse PHD finger is replaced by the corresponding domain from the shark Chiloscyllium punctatum binds H3K4me3 but fails to transmit an allosteric signal, indicating that binding of H3K4me3 by RAG-2 is insufficient to support recombination. By substituting residues in the C. punctatum PHD with the corresponding residues in the mouse PHD and testing for rescue of allostery, we demonstrate that H3K4me3 binding and transmission of an allosteric signal to RAG-1 are separable functions of the RAG-2 PHD finger.


Subject(s)
DNA-Binding Proteins/metabolism , Histones/metabolism , Homeodomain Proteins/metabolism , Allosteric Regulation/genetics , Allosteric Regulation/physiology , Animals , Binding Sites , Chromatin/metabolism , Histones/physiology , Lysine/metabolism , Methylation , Mice , Phylogeny , Protein Binding , Recombinases/metabolism , Sharks/metabolism , Substrate Specificity , V(D)J Recombination/genetics , V(D)J Recombination/physiology , VDJ Recombinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...