Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Environ Toxicol Chem ; 34(3): 626-39, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25545632

ABSTRACT

Sediment toxicity tests compared chronic effects on survival, growth, and biomass of juvenile freshwater mussels (28-d exposures with Lampsilis siliquoidea) to the responses of standard test organisms-amphipods (28-d exposures with Hyalella azteca) and midges (10-d exposures with Chironomus dilutus)-in sediments from 2 lead-zinc mining areas: the Tri-State Mining District and Southeast Missouri Mining District. Mussel tests were conducted in sediments sieved to <0.25 mm to facilitate recovery of juvenile mussels (2-4 mo old). Sediments were contaminated primarily with lead, zinc, and cadmium, with greater zinc and cadmium concentrations in Tri-State sediments and greater lead concentrations in southeast Missouri sediments. The frequency of highly toxic responses (reduced 10% or more relative to reference sites) in Tri-State sediments was greatest for amphipod survival (25% of samples), midge biomass (20%), and mussel survival (14%). In southeast Missouri sediments, the frequency of highly toxic samples was greatest for mussel biomass (25%) and amphipod biomass (13%). Thresholds for metal toxicity to mussels, expressed as hazard quotients based on probable effect concentrations, were lower for southeast Missouri sediments than for Tri-State sediments. Southeast Missouri sites with toxic sediments had 2 or fewer live mussel taxa in a concurrent mussel population survey, compared with 7 to 26 taxa at reference sites. These results demonstrate that sediment toxicity tests with juvenile mussels can be conducted reliably by modifying existing standard methods; that the sensitivity of mussels to metals can be similar to or greater than standard test organisms; and that responses of mussels in laboratory toxicity tests are consistent with effects on wild mussel populations.


Subject(s)
Bivalvia/drug effects , Fresh Water , Geologic Sediments/chemistry , Lead/toxicity , Mining , Water Pollutants, Chemical/toxicity , Zinc/toxicity , Amphipoda/drug effects , Amphipoda/growth & development , Animals , Biomass , Porosity , Principal Component Analysis , Toxicity Tests , United States , Water Pollutants, Chemical/analysis
2.
Environ Toxicol Chem ; 32(11): 2482-94, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23657917

ABSTRACT

Two spiking methods were compared and nickel (Ni) partitioning was evaluated during a series of toxicity tests with 8 different freshwater sediments having a range of physicochemical characteristics. A 2-step spiking approach with immediate pH adjustment by addition of NaOH at a 2:1 molar ratio to the spiked Ni was effective in producing consistent pH and other chemical characteristics across a range of Ni spiking levels. When Ni was spiked into sediment having a high acid-volatile sulfide and organic matter content, a total equilibration period of at least 10 wk was needed to stabilize Ni partitioning. However, highest spiking levels evidently exceeded sediment binding capacities; therefore, a 7-d equilibration in toxicity test chambers and 8 volume-additions/d of aerobic overlying water were used to avoid unrealistic Ni partitioning during toxicity testing. The 7-d pretest equilibration allowed excess spiked Ni and other ions from pH adjustment to diffuse from sediment porewater and promoted development of an environmentally relevant, 0.5- to 1-cm oxic/suboxic sediment layer in the test chambers. Among the 8 different spiked sediments, the logarithm of sediment/porewater distribution coefficient values (log Kd ) for Ni during the toxicity tests ranged from 3.5 to 4.5. These Kd values closely match the range of values reported for various field Ni-contaminated sediments, indicating that testing conditions with our spiked sediments were environmentally realistic.


Subject(s)
Geologic Sediments/chemistry , Nickel/analysis , Toxicity Tests, Chronic/methods , Water Pollutants, Chemical/analysis , Animals , Fresh Water , Hydrogen-Ion Concentration , Insecta/drug effects , Nickel/toxicity , Oligochaeta/drug effects , Sulfides/analysis , Water Pollutants, Chemical/toxicity
3.
Environ Monit Assess ; 184(9): 5623-40, 2012 Sep.
Article in English | MEDLINE | ID: mdl-21915593

ABSTRACT

Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 µg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98-58.0 µg Se/g; midge larvae, 12.7-50.6 µg Se/g; mosquitofish, 13.2-20.2 µg Se/g; and mollies, 12.8-30.4 µg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.


Subject(s)
Fishes/metabolism , Selenium/metabolism , Water Pollutants, Chemical/metabolism , Agriculture , Animals , Biota , California , Environmental Monitoring , Selenium/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data
4.
Sci Total Environ ; 416: 215-24, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22206697

ABSTRACT

There is a contaminant gradient in Lake Mead National Recreation Area (LMNRA) that is partly driven by municipal and industrial runoff and wastewater inputs via Las Vegas Wash (LVW). Adult male common carp (Cyprinus carpio; 10 fish/site) were collected from LVW, Las Vegas Bay (receiving LVW flow), Overton Arm (OA, upstream reference), and Willow Beach (WB, downstream) in March 2008. Discriminant function analysis was used to describe differences in metal concentrations and biological condition of fish collected from the four study sites, and canonical correlation analysis was used to evaluate the association between metal and biological traits. Metal concentrations were determined in whole-body extracts. Of 63 metals screened, those initially used in the statistical analysis were Ag, As, Ba, Cd, Co, Fe, Hg, Pb, Se, Zn. Biological variables analyzed included total length (TL), Fulton's condition factor, gonadosomatic index (GSI), hematocrit (Hct), and plasma estradiol-17ß and 11-ketotestosterone (11kt) concentrations. Analysis of metal composition and biological condition both yielded strong discrimination of fish by site (respective canonical model, p<0.0001). Compared to OA, pairwise Mahalanobis distances between group means were WB

Subject(s)
Carps/metabolism , Metals/adverse effects , Animals , Arizona , Fish Diseases/chemically induced , Lakes/analysis , Male , Metals/analysis , Nevada , Water Pollution, Chemical/adverse effects , Water Pollution, Chemical/analysis
5.
Environ Monit Assess ; 182(1-4): 325-40, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21318268

ABSTRACT

Vegetation, sub-surface peat, and road dust were sampled near the Delong Mountain Transportation System (DMTS) haul road in northwest Alaska in 2005-2006 to document aluminum, barium, cadmium, lead, and zinc concentrations, and to evaluate bioaccessibility of these metals. The DMTS haul road is the transport corridor between Red Dog Mine (a large-scale, lead-zinc mine and mill) and the coastal shipping port, and it traverses National Park Service lands. Compared to reference locations, total metal concentrations in four types of vegetation (birch, cranberry, and willow leaves, and cotton grass blades/stalks) collected 25 m from the haul road were enriched on average by factors of 3.5 for zinc, 8.0 for barium, 20 for cadmium, and 150 for lead. Triple rinsing of vegetation with a water/methanol mixture reduced metals concentrations by at most 50%, and cadmium and zinc concentrations were least affected by rinsing. Cadmium and zinc bioaccessibility was greater in vegetation (50% to 100%) than in dust (15% to 20%); whereas the opposite pattern was observed for lead bioaccessibility (<30% in vegetation; 50% in dust). Barium exhibited low-to-intermediate bioaccessibility in dust and vegetation (20% to 40%), whereas aluminum bioaccessibility was relatively low (<6%) in all sample types. Our reconnaissance-level study indicates that clean-up and improvements in lead/zinc concentrate transfer activities have been effective; however, as of 2006, metal dispersion from past and/or present releases of fugitive dusts along the DMTS road still may have been contributing to elevated metals in surface vegetation. Vegetation was most enriched in lead, but because bioaccessibility of cadmium was greater, any potential risks to animals that forage near the haul road might be equally important for both of these metals.


Subject(s)
Dust/analysis , Metals/analysis , Plants/chemistry , Soil Pollutants/analysis , Alaska , Automobiles/statistics & numerical data , Environmental Monitoring , Environmental Pollution/statistics & numerical data , Mining/statistics & numerical data
6.
Environ Toxicol Chem ; 29(9): 2053-63, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20821663

ABSTRACT

Toxicity of lead, cadmium, or zinc to early life stages of freshwater mussels (fatmucket, Lampsilis siliquoidea; Neosho mucket, L. rafinesqueana) was evaluated in 48-h exposures with mussel larvae (glochidia), in 96-h exposures with newly transformed (5-d-old) and two- or six-month-old juvenile mussels, or in 28-d exposures with two- or four-month-old mussels in reconstituted soft water. The 24-h median effect concentrations (EC50s) for fatmucket glochidia (>299 microg Pb/L, >227 microg Cd/L, 2,685 microg Zn/L) and 96-h EC50s for two- or six-month-old fatmucket (>426 microg Pb/L, 199 microg Cd/L, 1,700 microg Zn/L) were much higher than 96-h EC50s for newly transformed fatmucket (142 and 298 microg Pb/L, 16 microg Cd/L, 151 and 175 microg Zn/L) and Neosho mucket (188 microg Pb/L, 20 microg Cd/L, 145 microg Zn/L). Chronic values for fatmucket were 10 microg Pb/L, 6.0 microg Cd/L, and 63 and 68 microg Zn/L. When mussel data from the present study and the literature were included in updated databases for deriving U.S. Environmental Protection Agency water quality criteria, mussel genus mean acute values were in the lower percentiles of the sensitivity distribution of all freshwater species for Pb (the 26th percentile), Cd (the 15th to 29th percentile), or Zn (the 12th to 21st percentile). The mussel (Lampsilis) genus mean chronic value was the lowest value ever reported for Pb (the 9th percentile) but was near the middle of the sensitivity distribution for Cd (the 61st percentile) or Zn (the 44th percentile). These results indicate that mussels were relatively sensitive to the acute toxicity of these three metals and to the chronic toxicity of Pb, but were moderately sensitive to the chronic toxicity of Cd or Zn compared to other freshwater species.


Subject(s)
Metals, Heavy/toxicity , Unionidae/drug effects , Water Pollutants, Chemical/toxicity , Animals , Cadmium/toxicity , Dose-Response Relationship, Drug , Female , Fresh Water/chemistry , Lead/toxicity , Toxicity Tests, Acute , Toxicity Tests, Chronic , Unionidae/growth & development , Zinc/toxicity
7.
Environ Monit Assess ; 163(1-4): 313-26, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19283498

ABSTRACT

This study examined mercury concentrations in whole fish from Camp Far West Reservoir, an 830-ha reservoir in northern California, USA, located downstream from lands mined for gold during and following the Gold Rush of 1848-1864. Total mercury (reported as dry weight concentrations) was highest in spotted bass (mean, 0.93 microg/g; range, 0.16-4.41 microg/g) and lower in bluegill (mean, 0.45 microg/g; range, 0.22-1.96 microg/g) and threadfin shad (0.44 microg/g; range, 0.21-1.34 microg/g). Spatial patterns for mercury in fish indicated high concentrations upstream in the Bear River arm and generally lower concentrations elsewhere, including downstream near the dam. These findings coincided with patterns exhibited by methylmercury in water and sediment, and suggested that mercury-laden inflows from the Bear River were largely responsible for contaminating the reservoir ecosystem. Maximum concentrations of mercury in all three fish species, but especially bass, were high enough to warrant concern about toxic effects in fish and consumers of fish.


Subject(s)
Fishes/metabolism , Gold , Mercury/metabolism , Mining , Water Pollutants, Chemical/metabolism , Animals , California , Species Specificity
8.
Environ Monit Assess ; 170(1-4): 73-86, 2010 Nov.
Article in English | MEDLINE | ID: mdl-19856120

ABSTRACT

Voles and small passerine birds were live-captured near the Delong Mountain Regional Transportation System (DMTS) haul road in Cape Krusenstern National Monument in northwest Alaska to assess metals exposure and sub-lethal biological effects. Similar numbers of animals were captured from a reference site in southern Cape Krusenstern National Monument for comparison. Histopathological examination of selected organs, and analysis of cadmium, lead, and zinc concentrations in liver and blood samples were performed. Voles and small birds captured from near the haul road had about 20 times greater blood and liver lead concentrations and about three times greater cadmium concentrations when compared to those from the reference site, but there were no differences in zinc tissue concentrations. One vole had moderate metastatic mineralization of kidney tissue, otherwise we observed no abnormalities in internal organs or DNA damage in the blood of any of the animals. The affected vole also had the greatest liver and blood Cd concentration, indicating that the lesion might have been caused by Cd exposure. Blood and liver lead concentrations in animals captured near the haul road were below concentrations that have been associated with adverse biological effects in other studies; however, subtle effects resulting from lead exposure, such as the suppression of the activity of certain enzymes, cannot be ruled out for some individual animals. Results from our 2006 reconnaissance-level study indicate that overall, voles and small birds obtained from near the DMTS road in Cape Krusenstern National Monument were not adversely affected by metals exposure; however, because of the small sample size and other uncertainties, continued monitoring of lead and cadmium in terrestrial habitats near the DMTS road is advised.


Subject(s)
Arvicolinae/metabolism , Environmental Exposure/analysis , Environmental Pollutants/metabolism , Metals/metabolism , Passeriformes/metabolism , Alaska , Animals , Arvicolinae/blood , Cadmium/analysis , Cadmium/metabolism , Cadmium/toxicity , DNA Damage , Environmental Monitoring , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , Lead/analysis , Lead/metabolism , Lead/toxicity , Liver/metabolism , Metals/analysis , Metals/toxicity , Mining , Mutagens/analysis , Mutagens/metabolism , Mutagens/toxicity , Passeriformes/blood , Transportation , Zinc/analysis , Zinc/metabolism , Zinc/toxicity
9.
Environ Toxicol Chem ; 28(11): 2367-77, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19572770

ABSTRACT

The influence of dissolved organic carbon (DOC) and water composition on the toxicity of copper to juvenile freshwater mussels (fatmucket, Lampsilis siliquoidea) were evaluated in natural and reconstituted waters. Acute 96-h copper toxicity tests werec onducted at four nominal DOC concentrations (0, 2.5, 5, and 10 mg/L as carbon [C]) in dilutions of natural waters and in American Society for Testing and Materials (ASTM) reconstituted hard water. Toxicity tests also were conducted in ASTM soft, moderately hard, hard, and very hard reconstituted waters (nominal hardness 45-300 mg/L as CaCO3). Three natural surface waters (9.5-11 mg/L DOC) were diluted to obtain a series of DOC concentrations with diluted well water, and an extract of natural organic matter and commercial humic acid was mixed with ASTM hard water to prepare a series of DOC concentrations for toxicity testing. Median effective concentrations (EC50s) for dissolved copper varied >40-fold (9.9 to >396 gg Cu/L) over all 21 treatments in various DOC waters. Within a particular type of DOC water, EC50s increased 5- to 12-fold across DOC concentrations of 0.3 to up to 11 mg C/L. However, EC50s increased by only a factor of 1.4 (21-30 gg Cu/L) in the four ASTM waters with wide range of water hardness (52-300 mg CaCO3/L). Predictions from the biotic ligand model (BLM) for copper explained nearly 90% of the variability in EC50s. Nearly 70% of BLM-normalized EC50s for fatmucket tested in natural waters were below the final acute value used to derive the U.S. Environmental Protection Agency acute water quality criterion for copper, indicating that the criterion might not be protective of fatmucket and perhaps other mussel species.


Subject(s)
Copper/toxicity , Unionidae/drug effects , Water Pollutants, Chemical/toxicity , Water/chemistry , Animals , Carbon/metabolism , Female , Humic Substances , Ligands , Linear Models , Models, Biological , Toxicity Tests , Unionidae/growth & development , Unionidae/metabolism
10.
Bull Environ Contam Toxicol ; 80(5): 450-4, 2008 May.
Article in English | MEDLINE | ID: mdl-18425399

ABSTRACT

Organochlorine and metal contaminants often occur in commercial fish diets and can accumulate in fish to levels of concern for human consumption. Contaminant levels were investigated in diet and rainbow trout fillets from Missouri coldwater hatcheries used in "put and take" fisheries. The average fillet:diet ratio was <0.1 for lead and cadmium, 0.4-0.6 for organochlorine compounds, and about 0.8 for mercury. Trout fillet concentrations for all contaminants were low (<50 ng/g) and below Missouri's fish consumption advisory trigger levels.


Subject(s)
Animal Feed/analysis , Food Contamination/analysis , Oncorhynchus mykiss , Water Pollutants, Chemical/analysis , Animals , Fisheries , Hydrocarbons, Chlorinated/analysis , Metals/analysis
11.
Arch Environ Contam Toxicol ; 55(2): 161-72, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18202883

ABSTRACT

The lower Missouri River was studied to determine the distribution of selected persistent organic pollutants and bioavailable metals in depositional sediments. Nineteen sites between Omaha, Nebraska and Jefferson City, Missouri were sampled. This stretch of the river receives point-source and non-point-source inputs from industrial, urban, and agricultural activities. As part of an ecological assessment of the river, concentrations of 29 legacy organochlorine pesticides (OC pesticides), including chlordanes, DDTs, and hexachlorocyclohexanes; a select list of current-use pesticides, including trifluralin, diazinon, chlorpyrifos, and permethrin, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), divalent metals (copper, nickel, zinc, cadmium, and lead), and polybrominated diphenyl ethers (PBDEs) were determined. Concentrations (dry weight basis) of OC pesticides in the sediments were less than 1 ng/g, with the exception of the backwater sediment collected from the mouth of the Blue River in the Kansas City metropolitan area, which contained up to 20 ng/g total chlordane, 8.1 ng/g p,p'-DDE, 1.5 ng/g lindane, 4.8 ng/g dieldrin, and 3 ng/g endrin. Concentrations of chlorpyrifos and permethrin ranged from less than 1 ng/g to 5.5 ng/g and 44 ng/g, respectively. Concentrations of PCBs ranged from less than 11 ng/g to 250 ng/g, with the Blue River and Sibley sediments containing 100 and 250 ng/g total PCBs, respectively. Concentrations of total PAHs at 17 of the 19 sites ranged from 250 to 700 ng/g, whereas the Riverfront and Blue River sites in Kansas City contained 1100 ng/g and nearly 4000 ng/g, respectively. Concentrations of the metals did not vary significantly among most sites; however, the Blue River site contained elevated concentrations of zinc (104 microg/g), cadmium (0.7 microg/g), and lead (34 microg/g) compared to the other sites. The moderately high concentrations of acid-volatile sulfide in the sediments suggest a low potential for metal toxicity to benthic organisms along this reach of the Missouri River. The depositional area sediments contained concentrations of the targeted persistent organic chemicals and metals that were below published probable effect level concentrations.


Subject(s)
Geologic Sediments/analysis , Metals, Heavy/analysis , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Rivers , Water Pollution, Chemical/analysis , Biological Availability , Chromatography, Gas , Polybrominated Biphenyls/analysis , United States
12.
Environ Monit Assess ; 137(1-3): 213-32, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17587192

ABSTRACT

The Solomon River Basin is located in north-central Kansas in an area underlain by marine geologic shales. Selenium is an indigenous constituent of these shales and is readily leached into the surrounding groundwater. Portions of the Basin are irrigated primarily through the pumping of selenium-contaminated groundwater from wells onto fields in agricultural production. Water, sediment, macroinvertebrates, and fish were collected from various sites in the Basin in 1998 and analyzed for selenium. Selenium concentrations were analyzed spatially and temporally and compared to reported selenium toxic effect thresholds for specific ecosystem components: water, sediments, food-chain organisms, and wholebody fish. A selenium aquatic hazard assessment for the Basin was determined based on protocol established by Lemly. Throughout the Basin, water, macroinvertebrate, and whole fish samples exceeded levels suspected of causing reproductive impairment in fish. Population structures of several fish species implied that successful reproduction was occurring; however, the influence of immigration of fish from low-selenium habitats could not be discounted. Site-specific fish reproduction studies are needed to determine the true impact of selenium on fishery resources in the Basin.


Subject(s)
Fishes , Geologic Sediments/chemistry , Invertebrates/chemistry , Rivers/chemistry , Selenium/analysis , Animals , Kansas , Therapeutic Irrigation
13.
Environ Toxicol Chem ; 26(10): 2029-35, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17867871

ABSTRACT

The present study evaluated the performance and variability in acute toxicity tests with glochidia and newly transformed juvenile mussels using the standard methods outlined in American Society for Testing and Materials (ASTM). Multiple 48-h toxicity tests with glochidia and 96-h tests with juvenile mussels were conducted within a single laboratory and among five laboratories. All tests met the test acceptability requirements (e.g., >or=90% control survival). Intralaboratory tests were conducted over two consecutive mussel-spawning seasons with mucket (Actinonaias ligamentina) or fatmucket (Lampsilis siliquoidea) using copper, ammonia, or chlorine as a toxicant. For the glochidia of both species, the variability of intralaboratory median effective concentrations (EC50s) for the three toxicants, expressed as the coefficient of variation (CV), ranged from 14 to 27% in 24-h exposures and from 13 to 36% in 48-h exposures. The intralaboratory CV of copper EC50s for juvenile fatmucket was 24% in 48-h exposures and 13% in 96-h exposures. Interlaboratory tests were conducted with fatmucket glochidia and juveniles by five laboratories using copper as a toxicant. The interlaboratory CV of copper EC50s for glochidia was 13% in 24-h exposures and 24% in 48-h exposures, and the interlaboratory CV for juveniles was 22% in 48-h exposures and 42% in 96-h exposures. The high completion success and the overall low variability in test results indicate that the test methods have acceptable precision and can be performed routinely.


Subject(s)
Bivalvia/drug effects , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Animals , Bivalvia/growth & development , Fresh Water , Laboratories , Larva/drug effects
14.
Environ Toxicol Chem ; 26(10): 2036-47, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17867873

ABSTRACT

The objective of the present study was to determine acute toxicity of copper, ammonia, or chlorine to larval (glochidia) and juvenile mussels using the recently published American Society for Testing and Materials (ASTM) Standard guide for conducting laboratory toxicity tests with freshwater mussels. Toxicity tests were conducted with glochidia (24- to 48-h exposures) and juveniles (96-h exposures) of up to 11 mussel species in reconstituted ASTM hard water using copper, ammonia, or chlorine as a toxicant. Copper and ammonia tests also were conducted with five commonly tested species, including cladocerans (Daphnia magna and Ceriodaphnia dubia; 48-h exposures), amphipod (Hyalella azteca; 48-h exposures), rainbow trout (Oncorhynchus mykiss; 96-h exposures), and fathead minnow (Pimephales promelas; 96-h exposures). Median effective concentrations (EC50s) for commonly tested species were >58 microg Cu/L (except 15 microg Cu/L for C. dubia) and >13 mg total ammonia N/L, whereas the EC50s for mussels in most cases were <45 microg Cu/L or <12 mg N/L and were often at or below the final acute values (FAVs) used to derive the U.S. Environmental Protection Agency 1996 acute water quality criterion (WQC) for copper and 1999 acute WQC for ammonia. However, the chlorine EC50s for mussels generally were >40 microg/L and above the FAV in the WQC for chlorine. The results indicate that the early life stages of mussels generally were more sensitive to copper and ammonia than other organisms and that, including mussel toxicity data in a revision to the WQC, would lower the WQC for copper or ammonia. Furthermore, including additional mussel data in 2007 WQC for copper based on biotic ligand model would further lower the WQC.


Subject(s)
Ammonia/toxicity , Bivalvia/drug effects , Chlorine/toxicity , Copper/toxicity , Larva/drug effects , Water Pollutants, Chemical/toxicity , Animals , Bivalvia/growth & development , Female , Fresh Water , Life Cycle Stages
15.
Environ Toxicol Chem ; 26(8): 1657-65, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17702339

ABSTRACT

Studies of fish communities of streams draining mining areas suggest that sculpins (Cottus spp.) may be more sensitive than salmonids to adverse effects of metals. We compared the toxicity of zinc, copper, and cadmium to mottled sculpin (C. bairdi) and rainbow trout (Onchorhynchus mykiss) in laboratory toxicity tests. Acute (96-h) and early life-stage chronic (21- or 28-d) toxicity tests were conducted with rainbow trout and with mottled sculpins from populations in Minnesota and Missouri, USA, in diluted well water (hardness = 100 mg/L as CaCO3). Acute and chronic toxicity of metals to newly hatched and swim-up stages of mottled sculpins differed between the two source populations. Differences between populations were greatest for copper, with chronic toxicity values (ChV = geometric mean of lowest-observed-effect concentration and no-observed-effect concentration) of 4.4 microg/L for Missouri sculpins and 37 microg/L for Minnesota sculpins. Cadmium toxicity followed a similar trend, but differences between sculpin populations were less marked, with ChVs of 1.1 microg/L (Missouri) and 1.9 microg/L (Minnesota). Conversely, zinc was more toxic to Minnesota sculpins (ChV = 75 microg/L) than Missouri sculpins (chronic ChV = 219 microg/L). Species-average acute and chronic toxicity values for mottled sculpins were similar to or lower than those for rainbow trout and indicated that mottled sculpins were among the most sensitive aquatic species to toxicity of all three metals. Our results indicate that current acute and chronic water quality criteria for cadmium, copper, and zinc adequately protect rainbow trout but may not adequately protect some populations of mottled sculpins. Proposed water quality criteria for copper based on the biotic ligand model would be protective of both sculpin populations tested.


Subject(s)
Cadmium/toxicity , Copper/toxicity , Gnathostoma/physiology , Life Cycle Stages/drug effects , Trout/physiology , Water Pollutants, Chemical/toxicity , Zinc/toxicity , Animals , Inhibitory Concentration 50 , Life Cycle Stages/physiology , Risk Assessment , Species Specificity
16.
Ecotoxicol Environ Saf ; 67(1): 31-47, 2007 May.
Article in English | MEDLINE | ID: mdl-17335901

ABSTRACT

The potential effects of proposed lead-zinc mining in an ecologically sensitive area were assessed by studying a nearby mining district that has been exploited for about 30 y under contemporary environmental regulations and with modern technology. Blood and liver samples representing fish of three species (largescale stoneroller, Campostoma oligolepis, n=91; longear sunfish, Lepomis megalotis, n=105; and northern hog sucker, Hypentelium nigricans, n=20) from 16 sites representing a range of conditions relative to mining activities were collected. Samples were analyzed for metals (also reported in a companion paper) and for biomarkers of metals exposure [erythrocyte delta-aminolevulinic acid dehydratase (ALA-D) activity; concentrations of zinc protoporphyrin (ZPP), iron, and hemoglobin (Hb) in blood; and hepatic metallothionein (MT) gene expression and lipid peroxidation]. Blood lead concentrations were significantly higher and ALA-D activity significantly lower in all species at sites nearest to active lead-zinc mines and in a stream contaminated by historical mining than at reference or downstream sites. ALA-D activity was also negatively correlated with blood lead concentrations in all three species but not with other metals. Iron and Hb concentrations were positively correlated in all three species, but were not correlated with any other metals in blood or liver in any species. MT gene expression was positively correlated with liver zinc concentrations, but neither MT nor lipid peroxidase differences among fish grouped according to lead concentrations were statistically significant. ZPP was not detected by hematofluorometry in most fish, but fish with detectable ZPP were from sites affected by mining. Collectively, these results confirm that metals are released to streams from active lead-zinc mining sites and are accumulated by fish.


Subject(s)
Biomarkers , Fishes , Lead/toxicity , Liver/drug effects , Mining , Water Pollutants, Chemical/toxicity , Zinc/toxicity , Animals , Biomarkers/blood , Biomarkers/metabolism , Cadmium/toxicity , Cyprinidae , Environmental Exposure , Environmental Monitoring/methods , Fishes/blood , Fishes/metabolism , Fresh Water/chemistry , Hemoglobins/metabolism , Iron/blood , Lead/analysis , Lead/blood , Lead/metabolism , Lipid Peroxidation/drug effects , Lipid Peroxides/metabolism , Liver/metabolism , Metallothionein/genetics , Metallothionein/metabolism , Missouri , Perciformes , Porphobilinogen Synthase/metabolism , Protoporphyrins/blood , RNA, Messenger/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/blood , Water Pollutants, Chemical/metabolism , Zinc/analysis , Zinc/blood , Zinc/metabolism
17.
Ecotoxicol Environ Saf ; 67(1): 14-30, 2007 May.
Article in English | MEDLINE | ID: mdl-17306371

ABSTRACT

The potential effects of proposed lead-zinc mining in an ecologically sensitive area were assessed by studying a nearby mining district that has been exploited for about 30 yr under contemporary environmental regulations and with modern technology. Blood and liver samples representing fish of three species (largescale stoneroller, Campostoma oligolepis, n=91; longear sunfish, Lepomis megalotis, n=105; and northern hog sucker, Hypentelium nigricans, n=20) were collected from 16 sites representing a range of conditions relative to lead-zinc mining and ore beneficiation in southeastern Missouri. Samples were analyzed for lead, zinc, and cadmium, and for a suite of biomarkers (reported in a companion paper). A subset of the hog sucker (n=9) representing three sites were also analyzed for nickel and cobalt. Blood and liver lead concentrations were highly correlated (r=0.84-0.85, P<0.01) in all three species and were significantly (ANOVA, P<0.01) greater at sites <10 km downstream of active lead-zinc mines and mills and in a historical lead-zinc mining area than at reference sites, including a site in the area proposed for new mining. Correlations between blood and liver cadmium concentrations were less evident than for lead but were nevertheless statistically significant (r=0.26-0.69, P <0.01-0.07). Although blood and liver cadmium concentrations were highest in all three species at sites near mines, within-site variability was greater and mining-related trends were less evident than for lead. Blood and liver zinc concentrations were significantly correlated only in stoneroller (r=0.46, P<0.01) and mining-related trends were not evident. Concentrations of cobalt and nickel in blood and liver were significantly higher (ANOVA, P<0.01) at a site near an active mine than at a reference site and a site in the historical lead-zinc mining area. These findings confirm previous studies indicating that lead and other metals are released to streams from active lead-zinc mines and are available for uptake by aquatic organisms.


Subject(s)
Cadmium/metabolism , Fishes , Fresh Water/chemistry , Lead/metabolism , Mining , Water Pollutants, Chemical/metabolism , Zinc/metabolism , Animals , Biomarkers/blood , Biomarkers/metabolism , Cadmium/analysis , Cadmium/blood , Cobalt/metabolism , Cyprinidae , Environmental Exposure , Environmental Monitoring/methods , Fishes/blood , Fishes/metabolism , Lead/analysis , Lead/blood , Liver/metabolism , Missouri , Nickel/metabolism , Perciformes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/blood , Zinc/analysis , Zinc/blood
18.
Environ Monit Assess ; 129(1-3): 227-41, 2007 Jun.
Article in English | MEDLINE | ID: mdl-16957839

ABSTRACT

We evaluated exposure of aquatic biota to lead (Pb), zinc (Zn), and cadmium (Cd) in streams draining a Pb-mining district in southeast Missouri. Samples of plant biomass (detritus, periphyton, and filamentous algae), invertebrates (snails, crayfish, and riffle benthos), and two taxa of fish were collected from seven sites closest to mining areas (mining sites), four sites further downstream from mining (downstream sites), and eight reference sites in fall 2001. Samples of plant biomass from mining sites had highest metal concentrations, with means 10- to 60-times greater than those for reference sites. Mean metal concentrations in over 90% of samples of plant biomass from mining sites were significantly greater than those from reference sites. Mean concentrations of Pb, Zn, and Cd in most invertebrate samples from mining sites, and mean Pb concentrations in most fish samples from mining sites, were also significantly greater than those from reference sites. Concentrations of all three metals were lower in samples from downstream sites, but several samples of plant biomass from downstream sites had metal concentrations significantly greater than those from reference sites. Analysis of supplemental samples collected in the fall of 2002, a year of above-average stream discharge, had lower Pb concentrations and higher Cd concentrations than samples collected in 2001, near the end of a multi-year drought. Concentrations of Pb measured in fish and invertebrates collected from mining sites during 2001 and 2002 were similar to those measured at nearby sites in the 1970s, during the early years of mining in the Viburnum Trend. Results of this study demonstrate that long-term Pb mining activity in southeast Missouri has resulted in significantly elevated concentrations of Pb, Cd, and Zn in biota of receiving streams, compared to biota of similar streams without direct influence of mining. Our results also demonstrate that metal exposure in the study area differed significantly among sample types, habitats, and years, and that these factors should be carefully considered in the design of biomonitoring studies.


Subject(s)
Environmental Monitoring , Lead , Metals, Heavy/analysis , Mining , Rivers , Animals , Biomass , Fishes , Industrial Waste , Invertebrates , Missouri
19.
Arch Environ Contam Toxicol ; 49(1): 76-88, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15981034

ABSTRACT

The Tri-States Mining District (TSMD) of Missouri (MO), Kansas (KS), and Oklahoma (OK), USA, was mined for lead (Pb) and zinc (Zn) for more than a century. Mining ceased more than 30 years ago, but wastes remain widely distributed in the region, and there is evidence of surface- and groundwater contamination in the Spring River-Neosho River (SR-NR) system of northeastern OK. In October 2001, we collected a total of 74 fish from six locations in the SR-NR system that included common carp (Cyprinus carpio), channel- and flathead catfish (Ictalurus punctatus and Pylodictis olivaris), largemouth- and spotted bass (Micropterus salmoides and Micropterus punctulatus), and white crappie (Pomoxis annularis). We obtained additional fish from locations in MO that included three reference sites and one site that served as a "positive control" (heavily contaminated by Pb). Blood, carcass (headed, eviscerated, and scaled) and liver (carp only) samples were analyzed for cadmium (Cd), Pb, and Zn. Our objectives were to assess the degree to which fish from the OK portion of the SR-NR system are contaminated by these elements and to evaluate fish blood sampling for biomonitoring. Concentrations of Cd and Pb in carp and catfish from OK sites were elevated and Pb concentrations of some approached those of the highly contaminated site in MO, but concentrations in bass and crappie were relatively low. For Zn, correlations were weak among concentrations in the three tissues and none of the samples appeared to reflect site contamination. Variability was high for Cd in all three tissues of carp; differences between sites were statistically significant (p < 0.05) only for blood even though mean liver concentrations were at least 100-fold greater than those in blood. Blood concentrations of Cd and Pb were positively correlated (r2 = 0.49 to 0.84) with the concentration of the same element in carp and catfish carcasses or in carp livers, and the corresponding multiple regression models were highly significant (p < or = 0.001). Our data indicate that potentially nonlethal blood sampling can be useful for monitoring of selected metals in carp, catfish, and perhaps other fishes.


Subject(s)
Environmental Monitoring/methods , Fishes/metabolism , Metals, Heavy/pharmacokinetics , Water Pollutants, Chemical/pharmacokinetics , Water Supply/analysis , Animals , Blood , Body Burden , Cadmium/blood , Cadmium/pharmacokinetics , Lead/blood , Lead/pharmacokinetics , Liver/chemistry , Liver/metabolism , Meat/analysis , Metals, Heavy/blood , Oklahoma , Water Pollutants, Chemical/blood , Zinc/blood , Zinc/pharmacokinetics
20.
Environ Sci Technol ; 38(23): 6210-6, 2004 Dec 01.
Article in English | MEDLINE | ID: mdl-15597873

ABSTRACT

We evaluated the influence of sediment characteristics, acid-volatile sulfide (AVS) and organic matter (OM), on the toxicity of chromium (Cr) in freshwater sediments. We conducted chronic (28-42-d) toxicitytests with the amphipod Hyalella azteca exposed to Cr(VI) and Cr(III) in water and in spiked sediments. Waterborne Cr(VI) caused reduced survival of amphipods with a median lethal concentration (LC50) of 40 microg/L. Cr(VI) spiked into test sediments with differing levels of AVS resulted in graded decreases in AVS and sediment OM. Only Cr(VI)-spiked sediments with low AVS concentrations (< 1micromol/g) caused significant amphipod mortality. Waterborne Cr(III) concentrations near solubility limits caused decreased survival of amphipods at pH 7 and pH 8 but not at pH 6. Sediments spiked with high levels of Cr(III) did not affect amphipod survival but had minor effects on growth and inconsistent effects on reproduction. Pore waters of some Cr(III)-spiked sediments contained measurable concentrations of Cr(VI), but observed toxic effects did not correspond closely to Cr concentrations in sediment or pore waters. Our results indicate that risks of Cr toxicity are low in freshwater sediments containing substantial concentrations of AVS.


Subject(s)
Amphipoda/drug effects , Chromium/toxicity , Fresh Water/chemistry , Geologic Sediments/chemistry , Water Pollutants, Chemical/toxicity , Amphipoda/metabolism , Animals , Chromium/chemistry , Hydrogen-Ion Concentration , Toxicity Tests , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...