Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 58(14): 3856-3861, 2019 May 10.
Article in English | MEDLINE | ID: mdl-31158200

ABSTRACT

A temperature sensor based on a multimode interference thermometer is designed and fabricated. The operation mechanism is based on the thermal expansion of a specific volume of ethylene glycol contained in a glass bulb that is connected to a capillary of the same material, with a no-core fiber (NCF) inserted and centered into the capillary tube. As the temperature is increased, the liquid is expanded, and the NCF is gradually covered by the liquid, resulting in a peak wavelength shift that is correlated to the temperature variations. A sensitivity of 0.4447 nm/°C and highly linear response with an R2 of 0.99962 are obtained. The advantage of this configuration is that the sensing temperature range can be adjusted by changing either the inner diameter of the capillary tube or the bulb volume. We can also measure negative temperatures by simply modifying the freezing point of the liquid, which demonstrates the viability of the sensor for many applications.

2.
Opt Express ; 27(6): 8858-8870, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-31052697

ABSTRACT

We present a novel long-range surface plasmon polariton (LRSPP) device consisting of a suspended dielectric matrix in which an electrically active, millimeter-long metallic waveguide is embedded. We show that, by opening an air gap under the lower cladding, the influence of the substrate is suppressed and the symmetry of the thermo-optical distribution around the LRSPP waveguide is preserved over extended ranges of applied electrical current with minimal optical losses. Experimental results show that, compared to a standard nonsuspended structure, our device allows either the induction of a phase change that is three times larger, for a fixed electrical power, or, equivalently, a scaling down of the device to one-tenth of its original length, for a fixed phase change.

3.
Appl Opt ; 56(8): 2273-2279, 2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28375271

ABSTRACT

In this work we study the particular case of an optical fiber subjected to compression-bending load, the most common loading configuration for testing fiber optic bending sensors. Our analysis is based on the foundations of column theory and reveals a progressive stress homogenization across the optical fiber with increasing bending. This effect is general to any optical fiber subjected to this load configuration and it is of particular interest for structures with multiple cores since the state of stress experienced by each core can significantly differ even for a condition of constant load. The approach outlined here captures relevant features observed in experiments with multicore fiber optic bending sensors. Also, this approach can be incorporated into coupled-mode theory for assessing the performance of spectrally operated fiber sensors based on multicore coupled structures under realistic conditions commonly encountered in the experiments and without the need of performing computationally expensive simulations. The progressive stress homogenization, as well as the regime of homogeneous stress dominated by the bending contribution, is experimentally demonstrated using a multicore optical fiber with three coupled cores. Our observations are similar to those reported in recent experiments using other multicore fibers with different number of cores.

4.
Opt Express ; 21(10): 11853-61, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23736407

ABSTRACT

A curvature fiber optic sensor using a two-core fiber (TCF) is proposed and demonstrated. The TCF is designed to operate as a directional coupler with one core located exactly at the center of the fiber and the other off-axis, but close to the center of the fiber. This design allows straightforward splicing of the TCF to single mode fibers (SMF), and alignment of the off-axis core is not strictly required for optimum operation. The sensor is fabricated by simply splicing a 5 cm long section of TCF between two SMF sections, which provides a sinusoidal spectral response. When the fiber is bent, the coupling parameters are modified due to stress-optic and effective length effects, effectively blue-shifting the sinusoidal spectral response of the sensor and allowing for the measurement of curvature. The sensor exhibits linear response and a sensitivity of -137.87 nm/m(-1) for curvature ranging from 0 to 0.27 m(-1), making it suitable to measure small curvatures with high sensitivity.


Subject(s)
Fiber Optic Technology/instrumentation , Photometry/instrumentation , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis
5.
Opt Lett ; 36(17): 3425-7, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21886232

ABSTRACT

A novel (to the best of our knowledge) liquid level sensor based on multimode interference (MMI) effects is proposed and demonstrated. By using a multimode fiber (MMF) without cladding, known as no-core fiber, liquids around the MMF modify the self-imaging properties of the MMI device and the liquid level can be detected. We show that the sensor exhibits a highly linear response with the sensing range and multiplexed operations easily controlled by just modifying the length of the no-core fiber. At the same time, we can measure the refractive index of the liquid based on the maximum peak wavelength shift. We can also use the sensor for continuous and discrete liquid level sensing applications, thus providing a liquid level sensor that is inexpensive with a very simple fabrication process.

6.
Opt Lett ; 35(3): 324-6, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20125709

ABSTRACT

We report on a wavelength-tunable filter based on multimode interference (MMI) effects. A typical MMI filter consists of a multimode fiber (MMF) spliced between two single-mode fibers (SMF). The peak wavelength response of the filter exhibits a linear dependence when the length of the MMF is modified. Therefore a capillary tube filled with refractive-index-matching liquid is used to effectively increase the length of the MMF, and thus wavelength tuning is achieved. Using this filter a ring-based tunable erbium-doped fiber laser is demonstrated with a tunability of 30 nm, covering the full C-band.

7.
Opt Express ; 18(2): 591-7, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-20173879

ABSTRACT

A widely tunable erbium-doped all-fiber laser has been demonstrated. The tunable mechanism is based on a novel tunable filter using multimode interference effects (MMI). The tunable MMI filter was applied to fabricate a tunable erbium-doped fiber laser via a standard ring cavity. A tuning range of 60 nm was obtained, ranging from 1549 nm to 1609 nm, with a signal to noise ratio of 40 dB. The tunable MMI filter mechanism is very simple and inexpensive, but also quite efficient as a wavelength tunable filter.


Subject(s)
Erbium/chemistry , Fiber Optic Technology/instrumentation , Interferometry/instrumentation , Lasers , Refractometry/instrumentation , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...