Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Genome Integr ; 14: 2, 2023.
Article in English | MEDLINE | ID: mdl-38025522

ABSTRACT

The clinical outcome of radiation therapy is restricted due to the acquired radio-resistance of a subpopulation of tumour cells that may cause tumour relapse and distant metastasis. While the effects of ionizing radiation (IR) such as DNA damage and cell stress are well-documented, the potential role of IR in inducing invasive potential in cancer cells has not been broadly studied, therefore we aimed to investigate it in this study. MCF-7 cells irradiated with 0 Gy (control) or 2 Gy X-ray therapeutic doses of IR were assessed for cell viability, percentage of apoptotic cells, and reactive oxygen species (ROS) levels, DNA fragmentation, Matrigel invasion, assessment of epithelial-mesenchymal transition (EMT) markers and Helix pomatia agglutinin (HPA) binding at 30 min, 4- or 24-h post-IR. Reduction in cell viability, increase in apoptotic cells, ROS positive cells, and DNA fragmentation were observed, while functional invasiveness and EMT were exacerbated together with altered glycosylation in MCF-7 cells irradiated with 2 Gy X-ray compared to control cells. These findings indicate that despite the detrimental effects of 2 Gy X-ray IR on MCF-7 cells, a subpopulation of cells may have gained increased invasive potential. The exacerbated invasive potential may be attributed to enhanced EMT and altered glycosylation. Moreover, deregulation of transforming growth factor-beta (TGF-ß) following IR may be one of the elements responsible for these changes, as it lies in the intersection of these invasion-promoting cell processes.

2.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35216284

ABSTRACT

Cell communication via exosomes is capable of influencing cell fate in stress situations such as exposure to ionizing radiation. In vitro and in vivo studies have shown that exosomes might play a role in out-of-target radiation effects by carrying molecular signaling mediators of radiation damage, as well as opposite protective functions resulting in resistance to radiotherapy. However, a global understanding of exosomes and their radiation-induced regulation, especially within the context of an intact mammalian organism, has been lacking. In this in vivo study, we demonstrate that, compared to sham-irradiated (SI) mice, a distinct pattern of proteins and miRNAs is found packaged into circulating plasma exosomes after whole-body and partial-body irradiation (WBI and PBI) with 2 Gy X-rays. A high number of deregulated proteins (59% of WBI and 67% of PBI) was found in the exosomes of irradiated mice. In total, 57 and 13 miRNAs were deregulated in WBI and PBI groups, respectively, suggesting that the miRNA cargo is influenced by the tissue volume exposed to radiation. In addition, five miRNAs (miR-99b-3p, miR-200a-3p, miR-200a, miR-182-5p, miR-182) were commonly overexpressed in the exosomes from the WBI and PBI groups. In this study, particular emphasis was also given to the determination of the in vivo effect of exosome transfer by intracranial injection in the highly radiosensitive neonatal cerebellum at postnatal day 3. In accordance with a major overall anti-apoptotic function of the commonly deregulated miRNAs, here, we report that exosomes from the plasma of irradiated mice, especially in the case of WBI, prevent radiation-induced apoptosis, thus holding promise for exosome-based future therapeutic applications against radiation injury.


Subject(s)
Exosomes , MicroRNAs , Radiation Injuries , Animals , Apoptosis , Cerebellum/metabolism , Exosomes/metabolism , Mammals/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Proteomics , Radiation Injuries/metabolism
3.
Int J Mol Sci ; 22(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34769002

ABSTRACT

Along with the cells that are exposed to radiation, non-irradiated cells can unveil radiation effects as a result of intercellular communication, which are collectively defined as radiation induced bystander effects (RIBE). Exosome-mediated signalling is one of the core mechanisms responsible for multidirectional communication of tumor cells and their associated microenvironment, which may result in enhancement of malignant tumor phenotypes. Recent studies show that exosomes and exosome-mediated signalling also play a dynamic role in RIBE in cancer cell lines, many of which focused on altered exosome cargo or their effects on DNA damage. However, there is a lack of knowledge regarding how these changes in exosome cargo are reflected in other functional characteristics of cancer cells from the aspects of invasiveness and metastasis. Therefore, in the current study, we aimed to investigate exosome-mediated bystander effects of 2 Gy X-ray therapeutic dose of ionizing radiation on the invasive potential of MCF-7 breast cancer cells in vitro via assessing Matrigel invasion potential, epithelial mesenchymal transition (EMT) characteristics and the extent of glycosylation, as well as underlying plausible molecular mechanisms. The findings show that exosomes derived from irradiated MCF-7 cells enhance invasiveness of bystander MCF-7 cells, possibly through altered miRNA and protein content carried in exosomes.


Subject(s)
Breast Neoplasms/pathology , Exosomes/pathology , Breast Neoplasms/genetics , Bystander Effect/genetics , Bystander Effect/physiology , Cell Communication/genetics , Cell Line, Tumor , DNA Damage/genetics , Epithelial-Mesenchymal Transition/genetics , Exosomes/genetics , Female , Humans , MCF-7 Cells , MicroRNAs/genetics , Radiation, Ionizing , Signal Transduction/genetics , Tumor Microenvironment/genetics
4.
Biology (Basel) ; 10(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379152

ABSTRACT

PURPOSE: To study the induction of genomic instability (GI) in the progeny of cell populations irradiated with low doses of alpha-particles and the potential role of exosome-encapsulated bystander signalling. METHODS: The induction of GI in HF19 normal fibroblast cells was assessed by determining the formation of micronuclei (MN) in binucleate cells along with using the alkaline comet assay to assess DNA damage. RESULTS: Low dose alpha-particle exposure (0.0001-1 Gy) was observed to produce a significant induction of micronuclei and DNA damage shortly after irradiation (assays performed at 5 and 1 h post exposure, respectively). This damage was not only still evident and statistically significant in all irradiated groups after 10 population doublings, but similar trends were observed after 20 population doublings. Exosomes from irradiated cells were also observed to enhance the level of DNA damage in non-irradiated bystander cells at early times. CONCLUSION: very low doses of alpha-particles are capable of inducing GI in the progeny of irradiated cells even at doses where <1% of the cells are traversed, where the level of response was similar to that observed at doses where 100% of the cells were traversed. This may have important implications with respect to the evaluation of cancer risk associated with very low-dose alpha-particle exposure and deviation from a linear dose response.

5.
Int J Mol Sci ; 21(21)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182277

ABSTRACT

Molecular communication between irradiated and unirradiated neighbouring cells initiates radiation-induced bystander effects (RIBE) and out-of-field (abscopal) effects which are both an example of the non-targeted effects (NTE) of ionising radiation (IR). Exosomes are small membrane vesicles of endosomal origin and newly identified mediators of NTE. Although exosome-mediated changes are well documented in radiation therapy and oncology, there is a lack of knowledge regarding the role of exosomes derived from inside and outside the radiation field in the early and delayed induction of NTE following IR. Therefore, here we investigated the changes in exosome profile and the role of exosomes as possible molecular signalling mediators of radiation damage. Exosomes derived from organs of whole body irradiated (WBI) or partial body irradiated (PBI) mice after 24 h and 15 days post-irradiation were transferred to recipient mouse embryonic fibroblast (MEF) cells and changes in cellular viability, DNA damage and calcium, reactive oxygen species and nitric oxide signalling were evaluated compared to that of MEF cells treated with exosomes derived from unirradiated mice. Taken together, our results show that whole and partial-body irradiation increases the number of exosomes, instigating changes in exosome-treated MEF cells, depending on the source organ and time after exposure.


Subject(s)
Exosomes/radiation effects , Radiation Injuries/pathology , Animals , Bystander Effect/radiation effects , Calcium/metabolism , Cell Survival/radiation effects , Cells, Cultured , DNA Damage/radiation effects , Exosomes/metabolism , Female , Fibroblasts/metabolism , Fibroblasts/radiation effects , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , Radiation Injuries/metabolism , Radiation, Ionizing , Reactive Oxygen Species/metabolism , Signal Transduction/radiation effects
6.
Biology (Basel) ; 9(8)2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32726907

ABSTRACT

Ionizing Radiation (IR), especially at high doses, induces cellular senescence in exposed cultures. IR also induces "bystander effects" through signals released from irradiated cells, and these effects include many of the same outcomes observed following direct exposure. Here, we investigate if radiation can cause senescence through a bystander mechanism. Control cultures were exposed directly to 0, 0.1, 2, and 10 Gy. Unirradiated cells were treated with medium from irradiated cultures or with exosomes extracted from irradiated medium. The level of senescence was determined post-treatment (24 h, 15 days, 30 days, and 45 days) by ß-galactosidase staining. Media from cultures exposed to all four doses, and exosomes from these cultures, induced significant senescence in recipient cultures. Senescence levels were initially low at the earliest timepoint, and peaked at 15 days, and then decreased with further passaging. These results demonstrate that senescence is inducible through a bystander mechanism. As with other bystander effects, bystander senescence was induced by a low radiation dose. However, unlike other bystander effects, cultures recovered from bystander senescence after repeated passaging. Bystander senescence may be a potentially significant effect of exposure to IR, and may have both beneficial and harmful effects in the context of radiotherapy.

7.
Cancers (Basel) ; 12(1)2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31963587

ABSTRACT

Ionising radiation (IR) is commonly used for cancer therapy; however, its potential influence on the metastatic ability of surviving cancer cells exposed directly or indirectly to IR remains controversial. Metastasis is a multistep process by which the cancer cells dissociate from the initial site, invade, travel through the blood stream or lymphatic system, and colonise distant sites. This complex process has been reported to require cancer cells to undergo epithelial-mesenchymal transition (EMT) by which the cancer cells convert from an adhesive, epithelial to motile, mesenchymal form and is also associated with changes in glycosylation of cell surface proteins, which may be functionally involved in metastasis. In this paper, we give an overview of metastatic mechanisms and of the fundamentals of cancer-associated glycosylation changes. While not attempting a comprehensive review of this wide and fast moving field, we highlight some of the accumulating evidence from in vitro and in vivo models for increased metastatic potential in cancer cells that survive IR, focusing on angiogenesis, cancer cell motility, invasion, and EMT and glycosylation. We also explore the indirect effects in cells exposed to exosomes released from irradiated cells. The results of such studies need to be interpreted with caution and there remains limited evidence that radiotherapy enhances the metastatic capacity of cancers in a clinical setting and undoubtedly has a very positive clinical benefit. However, there is potential that this therapeutic benefit may ultimately be enhanced through a better understanding of the direct and indirect effects of IR on cancer cell behaviour.

8.
Radiat Res ; 187(1): 98-106, 2017 01.
Article in English | MEDLINE | ID: mdl-27959588

ABSTRACT

In directly irradiating cells, telomere metabolism is altered and similar effects have been observed in nontargeted cells. Exosomes and their cargo play dominant roles in communicating radiation-induced bystander effects with end points related to DNA damage. Here we report novel evidence that exosomes are also responsible for inducing telomere-related bystander effects. Breast epithelial cancer cells were exposed to either 2 Gy X rays, or exposed to irradiated cell conditioned media (ICCM), or exosomes purified from ICCM. Compared to control cells, telomerase activity decreased in the 2 Gy irradiated cells and both bystander samples after one population doubling. At the first population doubling, telomere length was shorter in the 2 Gy irradiated sample but not in the bystander samples. By 24 population doublings telomerase activity recovered to control levels in all samples; however, the 2 Gy irradiated sample continued to demonstrate short telomeres and both bystander samples acquired shorter telomeres. RNase treatment of exosomes prevented the bystander effects on telomerase and telomere length that were observed at 1 population doubling and 24 population doublings, respectively. Thermal denaturation by boiling eliminated the reduction of telomere length in bystander samples, suggesting that the protein fraction of exosomes also contributes to the telomeric effect. RNase treatment plus boiling abrogated all telomere-related effects in directly irradiated and bystander cell populations. These findings suggest that both proteins and RNAs of exosomes can induce alterations in telomeric metabolism, which can instigate genomic instability in epithelial cancer cells after X-ray irradiation.


Subject(s)
Breast Neoplasms/pathology , Exosomes/genetics , Exosomes/radiation effects , Genomic Instability/radiation effects , Mammary Glands, Human/pathology , Telomere/genetics , Telomere/radiation effects , Bystander Effect/radiation effects , Humans , MCF-7 Cells , Time Factors , X-Rays/adverse effects
9.
Mutat Res ; 772: 38-45, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25772109

ABSTRACT

Exosomes contain cargo material from endosomes, cytosol, plasma membrane and microRNA molecules, they are released by a number of non-cancer and cancer cells into both the extracellular microenvironment and body fluids such as blood plasma. Recently we demonstrated radiation-induced non-targeted effects [NTE: genomic instability (GI) and bystander effects (BE)] are partially mediated by exosomes, particularly the RNA content. However the mechanistic role of exosomes in NTE is yet to be fully understood. The present study used MCF7 cells to characterise the longevity of exosome-induced activity in the progeny of irradiated and unirradiated bystander cells. Exosomes extracted from conditioned media of irradiated and bystander progeny were added to unirradiated cells. Analysis was carried out at 1 and 20/24 population doublings following medium/exosome transfer for DNA/chromosomal damage. Results confirmed exosomes play a significant role in mediating NTE of ionising radiation (IR). This effect was remarkably persistent, observed >20 doublings post-irradiation in the progeny of bystander cells. Additionally, cell progeny undergoing a BE were themselves capable of inducing BE in other cells via exosomes they released. Furthermore we investigated the role of exosome cargo. Culture media from cells exposed to 2 Gy X-rays was subjected to ultracentrifugation and four inoculants prepared, (a) supernatants with exosomes removed, and pellets with (b) exosome proteins denatured, (c) RNA degraded, and (d) a combination of protein-RNA inactivation. These were added to separate populations of unirradiated cells. The BE was partially inhibited when either exosome protein or exosome RNA were inactivated separately, whilst combined RNA-protein inhibition significantly reduced or eliminated the BE. These results demonstrate that exosomes are associated with long-lived signalling of the NTE of IR. Both RNA and protein molecules of exosomes work in a synergistic manner to initiate NTE, spread these effects to naïve cells, and perpetuate GI in the affected cells.


Subject(s)
Bystander Effect/radiation effects , Exosomes/metabolism , Genomic Instability/radiation effects , RNA/metabolism , Signal Transduction/radiation effects , Cell Line, Tumor , Female , Humans , X-Rays
10.
Int J Radiat Biol ; 88(10): 781-5, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22812666

ABSTRACT

PURPOSE: The aim of this study was to contribute to an inter-laboratory investigation within the Non-Targeted Effects of Ionising Radiation Integrated project (NOTE) (2006-2010) to investigate the role of serum serotonin concentration on radiation-induced bystander effects using our successful experimental design. Two sera of high and low serotonin levels were tested alongside standard serum used in our laboratory. MATERIALS AND METHODS: Primary Human Fibroblast 19 (HF19) cells were sham/irradiated with 0.5 Gy alpha-particles, in medium supplemented with serum of different levels of serotonin. Filtered medium was transferred to unirradiated HF19 bystander cells. Cells from irradiated and bystander populations were harvested for chromosomal analysis at early and delayed times post-irradiation/media transfer to assess initial damaging effects and induction of delayed chromosomal instability respectively. RESULTS: Chromosomal damage was elevated to significant levels (p = ≤ 0.005) above respective controls in both cell populations in all groups. Induction of delayed chromosomal instability was significantly observed in all groups at delayed time post irradiation/medium transfer. Furthermore, induction of bystander effects at early and delayed times was not significantly different between groups. CONCLUSIONS: No effect of serotonin on the induction of either bystander effects of genomic instability was observed using this experimental system.


Subject(s)
Bystander Effect/drug effects , Bystander Effect/radiation effects , Chromosomal Instability/drug effects , Chromosomal Instability/radiation effects , Culture Media/chemistry , Fetus , Serotonin/pharmacology , Animals , Cattle , Cell Line , Humans , Laboratories , Serotonin/blood
11.
Radiat Res ; 177(5): 539-45, 2012 May.
Article in English | MEDLINE | ID: mdl-22612287

ABSTRACT

Communication between irradiated and un-irradiated (bystander) cells can cause damage in cells that are not directly targeted by ionizing radiation, a process known as the bystander effect. Bystander effects can also lead to chromosomal/genomic instability within the progeny of bystander cells, similar to the progeny of directly irradiated cells. The factors that mediate this cellular communication can be transferred between cells via gap junctions or released into the extracellular media following irradiation, but their nature has not been fully characterized. In this study we tested the hypothesis that the bystander effect mediator contains an RNA molecule that may be carried by exosomes. MCF7 cells were irradiated with 2 Gy of X rays and the extracellular media was harvested. RNase treatment abrogated the ability of the media to induce early and late chromosomal damage in bystander cells. Furthermore, treatment of bystander cells with exosomes isolated from this media increased the levels of genomic damage. These results suggest that the bystander effect, and genomic instability, are at least in part mediated by exosomes and implicate a role for RNA.


Subject(s)
Bystander Effect/physiology , Chromosome Breakage , Chromosomes, Human/radiation effects , DNA Damage , Exosomes/physiology , Gamma Rays/adverse effects , Genomic Instability , RNA/genetics , Adenocarcinoma/pathology , Breast Neoplasms/pathology , Cell Line, Tumor/radiation effects , Cell Line, Tumor/ultrastructure , Comet Assay , Culture Media, Conditioned , Epithelial Cells/radiation effects , Epithelial Cells/ultrastructure , Exosomes/chemistry , Female , Humans , Microscopy, Electron , Ribonuclease, Pancreatic/pharmacology , Ultracentrifugation
SELECTION OF CITATIONS
SEARCH DETAIL
...