Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Mol Psychiatry ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38438524

ABSTRACT

CHD8 is an ATP-dependent chromatin-remodeling factor encoded by the most frequently mutated gene in individuals with autism spectrum disorder (ASD). Although many studies have examined the consequences of CHD8 haploinsufficiency in cells and mice, few have focused on missense mutations, the most common type of CHD8 alteration in ASD patients. We here characterized CHD8 missense mutations in ASD patients according to six prediction scores and experimentally examined the effects of such mutations on the biochemical activities of CHD8, neural differentiation of embryonic stem cells, and mouse behavior. Only mutations with high prediction scores gave rise to ASD-like phenotypes in mice, suggesting that not all CHD8 missense mutations detected in ASD patients are directly responsible for the development of ASD. Furthermore, we found that mutations with high scores cause ASD by mechanisms either dependent on or independent of loss of chromatin-remodeling function. Our results thus provide insight into the molecular underpinnings of ASD pathogenesis caused by missense mutations of CHD8.

2.
Transl Res ; 269: 31-46, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38401836

ABSTRACT

Chronic kidney disease (CKD) induces cardiac inflammation and fibrosis and reduces survival. We previously demonstrated that G protein-coupled receptor 68 (GPR68) promotes cardiac inflammation and fibrosis in mice with 5/6 nephrectomy (5/6Nx) and patients with CKD. However, no method of GPR68 inhibition has been found that has potential for therapeutic application. Here, we report that Cephalotaxus harringtonia var. nana extract and homoharringtonine ameliorate cardiac inflammation and fibrosis under CKD by suppressing GPR68 function. Reagents that inhibit the function of GPR68 were explored by high-throughput screening using a medicinal plant extract library (8,008 species), and we identified an extract from Cephalotaxus harringtonia var. nana as a GPR68 inhibitor that suppresses inflammatory cytokine production in a GPR68 expression-dependent manner. Consumption of the extract inhibited inflammatory cytokine expression and cardiac fibrosis and improved the decreased survival attributable to 5/6Nx. Additionally, homoharringtonine, a cephalotaxane compound characteristic of C. harringtonia, inhibited inflammatory cytokine production. Homoharringtonine administration in drinking water alleviated cardiac fibrosis and improved heart failure and survival in 5/6Nx mice. A previously unknown effect of C. harringtonia extract and homoharringtonine was revealed in which GPR68-dependent inflammation and cardiac dysfunction were suppressed. Utilizing these compounds could represent a new strategy for treating GPR68-associated diseases, including CKD.


Subject(s)
Homoharringtonine , Plant Extracts , Receptors, G-Protein-Coupled , Renal Insufficiency, Chronic , Animals , Mice , Cytokines/metabolism , Fibrosis , Heart Diseases/drug therapy , Heart Diseases/etiology , Homoharringtonine/pharmacology , Homoharringtonine/therapeutic use , Mice, Inbred C57BL , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/complications
3.
Nucleic Acids Res ; 52(2): 816-830, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38048321

ABSTRACT

Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria.


Subject(s)
DNA Packaging , Intrinsically Disordered Proteins , Mycobacterium , DNA/metabolism , Histones , Intrinsically Disordered Proteins/metabolism , Mycobacterium/metabolism
4.
Nucleic Acids Res ; 49(8): 4599-4612, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33849056

ABSTRACT

The eukaryotic replisome is comprised of three family-B DNA polymerases (Polα, δ and ϵ). Polα forms a stable complex with primase to synthesize short RNA-DNA primers, which are subsequently elongated by Polδ and Polϵ in concert with proliferating cell nuclear antigen (PCNA). In some species of archaea, family-D DNA polymerase (PolD) is the only DNA polymerase essential for cell viability, raising the question of how it alone conducts the bulk of DNA synthesis. We used a hyperthermophilic archaeon, Thermococcus kodakarensis, to demonstrate that PolD connects primase to the archaeal replisome before interacting with PCNA. Whereas PolD stably connects primase to GINS, a component of CMG helicase, cryo-EM analysis indicated a highly flexible PolD-primase complex. A conserved hydrophobic motif at the C-terminus of the DP2 subunit of PolD, a PIP (PCNA-Interacting Peptide) motif, was critical for the interaction with primase. The dissociation of primase was induced by DNA-dependent binding of PCNA to PolD. Point mutations in the alternative PIP-motif of DP2 abrogated the molecular switching that converts the archaeal replicase from de novo to processive synthesis mode.


Subject(s)
Archaeal Proteins/metabolism , DNA Helicases/metabolism , DNA Polymerase III/metabolism , DNA Primase/chemistry , Proliferating Cell Nuclear Antigen/metabolism , Thermococcus/metabolism , Amino Acid Motifs , Archaeal Proteins/chemistry , Chromatography, Gel , DNA Helicases/genetics , DNA Polymerase III/chemistry , DNA Primase/genetics , DNA Primase/metabolism , Escherichia coli/metabolism , Hydrophobic and Hydrophilic Interactions , Mutagenesis, Site-Directed , Native Polyacrylamide Gel Electrophoresis , Proliferating Cell Nuclear Antigen/genetics , Protein Binding , Recombinant Proteins , Surface Plasmon Resonance , Thermococcus/genetics
5.
BMC Biol ; 18(1): 152, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33115459

ABSTRACT

BACKGROUND: DNA polymerase D (PolD) is the representative member of the D family of DNA polymerases. It is an archaea-specific DNA polymerase required for replication and unrelated to other known DNA polymerases. PolD consists of a heterodimer of two subunits, DP1 and DP2, which contain catalytic sites for 3'-5' editing exonuclease and DNA polymerase activities, respectively, with both proteins being mutually required for the full activities of each enzyme. However, the processivity of the replicase holoenzyme has additionally been shown to be enhanced by the clamp molecule proliferating cell nuclear antigen (PCNA), making it crucial to elucidate the interaction between PolD and PCNA on a structural level for a full understanding of its functional relevance. We present here the 3D structure of a PolD-PCNA-DNA complex from Thermococcus kodakarensis using single-particle cryo-electron microscopy (EM). RESULTS: Two distinct forms of the PolD-PCNA-DNA complex were identified by 3D classification analysis. Fitting the reported crystal structures of truncated forms of DP1 and DP2 from Pyrococcus abyssi onto our EM map showed the 3D atomic structural model of PolD-PCNA-DNA. In addition to the canonical interaction between PCNA and PolD via PIP (PCNA-interacting protein)-box motif, we found a new contact point consisting of a glutamate residue at position 171 in a ß-hairpin of PCNA, which mediates interactions with DP1 and DP2. The DNA synthesis activity of a mutant PolD with disruption of the E171-mediated PCNA interaction was not stimulated by PCNA in vitro. CONCLUSIONS: Based on our analyses, we propose that glutamate residues at position 171 in each subunit of the PCNA homotrimer ring can function as hooks to lock PolD conformation on PCNA for conversion of its activity. This hook function of the clamp molecule may be conserved in the three domains of life.


Subject(s)
Archaeal Proteins/chemistry , DNA, Archaeal/chemistry , DNA-Directed DNA Polymerase/chemistry , Nucleic Acid Conformation , Thermococcus/genetics , Cryoelectron Microscopy , Pyrococcus abyssi/genetics , Thermococcus/enzymology
6.
Mitochondrion ; 53: 99-108, 2020 07.
Article in English | MEDLINE | ID: mdl-32439622

ABSTRACT

Chemical acetylation is postulated to occur in mitochondria. Mitochondrial transcription factor A (TFAM or mtTFA), a mitochondrial transcription initiation factor as well as the major mitochondrial nucleoid protein coating the entire mitochondrial genome, is proposed to be acetylated in animals and cultured cells. This study investigated the properties of human TFAM, in conjunction with the mechanism and effects of TFAM acetylation in vitro. Using highly purified recombinant human TFAM and 3 kb circular DNA as a downsized mtDNA model, we studied how the global TFAM-DNA interaction is affected/regulated by the quantitative TFAM-DNA relationship and TFAM acetylation. Results showed that the TFAM-DNA ratio strictly affects the TFAM property to unwind circular DNA in the presence of topoisomerase I. Mass spectrometry analysis showed that in vitro chemical acetylation of TFAM with acetyl-coenzyme A occurs preferentially on specific lysine residues, including those reported to be acetylated in exogenously expressed TFAM in cultured human cells, indicating that chemical acetylation plays a crucial role in TFAM acetylation in mitochondria. Intriguingly, the modification significantly decreased TFAM's DNA-unwinding ability, while its DNA-binding ability was largely unaffected. Altogether, we propose TFAM is chemically acetylated in vivo, which could change mitochondrial DNA topology, leading to copy number and gene expression modulation.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Acetylation , DNA/genetics , Humans , Lysine/chemistry , Models, Molecular , Protein Conformation , Transcription, Genetic
7.
Sci Rep ; 9(1): 10183, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31308435

ABSTRACT

Facilitates chromatin transcription (FACT) is a histone chaperone, which accomplishes both nucleosome assembly and disassembly. Our combined cryo-electron microscopy (EM) and native mass spectrometry (MS) studies revealed novel key steps of nucleosome reorganization conducted by a Mid domain and its adjacent acidic AID segment of human FACT. We determined three cryo-EM structures of respective octasomes complexed with the Mid-AID and AID regions, and a hexasome alone. We discovered extensive contacts between a FACT region and histones H2A, H2B, and H3, suggesting that FACT is competent to direct functional replacement of a nucleosomal DNA end by its phosphorylated AID segment (pAID). Mutational assays revealed that the aromatic and phosphorylated residues within pAID are essential for octasome binding. The EM structure of the hexasome, generated by the addition of Mid-pAID or pAID, indicated that the dissociation of H2A-H2B dimer causes significant alteration from the canonical path of the nucleosomal DNA.


Subject(s)
Chromatin Assembly and Disassembly/physiology , DNA-Binding Proteins/metabolism , High Mobility Group Proteins/metabolism , Nucleosomes/metabolism , Transcriptional Elongation Factors/metabolism , Chromatin/chemistry , Cryoelectron Microscopy/methods , DNA/chemistry , DNA-Binding Proteins/physiology , High Mobility Group Proteins/physiology , Histones/metabolism , Histones/physiology , Humans , Mass Spectrometry/methods , Models, Molecular , Molecular Chaperones/metabolism , Nucleosomes/physiology , Protein Binding/physiology , Transcriptional Elongation Factors/physiology
8.
Biophys Physicobiol ; 16: 59-67, 2019.
Article in English | MEDLINE | ID: mdl-30923663

ABSTRACT

PolyADP-ribosylation (PARylation) is a posttranslational modification that is involved in the various cellular functions including DNA repair, genomic stability, and transcriptional regulation. PARylation is catalyzed by the poly(ADP-ribose) polymerase (PARP) family proteins, which mainly recognize damaged DNA and initiate repair processes. PARP inhibitors are expected to be novel anticancer drugs for breast and ovarian cancers having mutation in BRCA tumor suppressor genes. However the structure of intact (full-length) PARP is not yet known. We have produced and purified the full-length human PARP1 (h-PARP1), which is the major family member of PARPs, and analyzed it with single particle electron microscopy. The electron microscopic images and the reconstructed 3D density map revealed a dimeric configuration of the h-PARP1, in which two ring-shaped subunits are associated with two-fold symmetry. Although the PARP1 is hypothesized to form a dimer on damaged DNA, the quaternary structure of this protein is still controversial. The present result would provide the first structural evidence of the dimeric structure of PARP1.

9.
Extremophiles ; 23(1): 161-172, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30506100

ABSTRACT

DNA polymerase D (PolD), originally discovered in Pyrococcus furiosus, has no sequence homology with any other DNA polymerase family. Genes encoding PolD are found in most of archaea, except for those archaea in the Crenarchaeota phylum. PolD is composed of two proteins: DP1 and DP2. To date, the 3D structure of the PolD heteromeric complex is yet to be determined. In this study, we established a method that prepared highly purified PolD from Thermococcus kodakarensis, and purified DP1 and DP2 proteins formed a stable complex in solution. An intrinsically disordered region was identified in the N-terminal region of DP1, but the static light scattering analysis provided a reasonable molecular weight of DP1. In addition, PolD forms as a complex of DP1 and DP2 in a 1:1 ratio. Electron microscope single particle analysis supported this composition of PolD. Both proteins play an important role in DNA synthesis activity and in 3'-5' degradation activity. DP1 has extremely low affinity for DNA, while DP2 is mainly responsible for DNA binding. Our work will provide insight and the means to further understand PolD structure and the molecular mechanism of this archaea-specific DNA polymerase.


Subject(s)
Archaeal Proteins/metabolism , DNA Polymerase III/metabolism , Thermococcus/enzymology , Archaeal Proteins/chemistry , DNA Polymerase III/chemistry , Enzyme Stability , Protein Domains , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism , Substrate Specificity
10.
Sci Rep ; 8(1): 16209, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30385773

ABSTRACT

In Eukarya and Archaea, the lagging strand synthesis is accomplished mainly by three key factors, DNA polymerase (Pol), flap endonuclease (FEN), and DNA ligase (Lig), in the DNA replication process. These three factors form important complexes with proliferating cell nuclear antigen (PCNA), thereby constructing a platform that enable each protein factor to act successively and smoothly on DNA. The structures of the Pol-PCNA-DNA and Lig-PCNA-DNA complexes alone have been visualized by single particle analysis. However, the FEN-PCNA-DNA complex structure remains unknown. In this report, we for the first time present this tertiary structure determined by single particle analysis. We also successfully visualized the structure of the FEN-Lig-PCNA-DNA complex, corresponding to a putative intermediate state between the removal of the DNA flap by FEN and the sealing of the nicked DNA by Lig. This structural study presents the direct visualization of the handing-over action, which proceeds between different replication factors on a single PCNA clamp bound to DNA. We detected a drastic conversion of the DNA from a bent form to a straight form, in addition to the dynamic motions of replication factors in the switching process.


Subject(s)
DNA Replication , DNA/genetics , DNA/metabolism , Proliferating Cell Nuclear Antigen/chemistry , Proliferating Cell Nuclear Antigen/metabolism , Base Sequence , Binding Sites , DNA/chemistry , Models, Biological , Models, Molecular , Molecular Conformation , Protein Binding , Structure-Activity Relationship
11.
Structure ; 24(11): 1960-1971, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27773688

ABSTRACT

Archaeal NucS nuclease was thought to degrade the single-stranded region of branched DNA, which contains flapped and splayed DNA. However, recent findings indicated that EndoMS, the orthologous enzyme of NucS, specifically cleaves double-stranded DNA (dsDNA) containing mismatched bases. In this study, we determined the structure of the EndoMS-DNA complex. The complex structure of the EndoMS dimer with dsDNA unexpectedly revealed that the mismatched bases were flipped out into binding sites, and the overall architecture most resembled that of restriction enzymes. The structure of the apo form was similar to the reported structure of Pyrococcus abyssi NucS, indicating that movement of the C-terminal domain from the resting state was required for activity. In addition, a model of the EndoMS-PCNA-DNA complex was preliminarily verified with electron microscopy. The structures strongly support the idea that EndoMS acts in a mismatch repair pathway.


Subject(s)
DNA, Single-Stranded/metabolism , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , Pyrococcus abyssi/enzymology , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Binding Sites , DNA Mismatch Repair , DNA, Archaeal/chemistry , DNA, Archaeal/metabolism , DNA, Single-Stranded/chemistry , Microscopy, Electron , Models, Molecular , Protein Binding , Protein Conformation , Pyrococcus abyssi/chemistry
12.
Sci Rep ; 6: 31526, 2016 08 17.
Article in English | MEDLINE | ID: mdl-27531865

ABSTRACT

Rotation of bacterial flagellar motor is driven by the interaction between the stator and rotor, and the driving energy is supplied by ion influx through the stator channel. The stator is composed of the MotA and MotB proteins, which form a hetero-hexameric complex with a stoichiometry of four MotA and two MotB molecules. MotA and MotB are four- and single-transmembrane proteins, respectively. To generate torque, the MotA/MotB stator unit changes its conformation in response to the ion influx, and interacts with the rotor protein FliG. Here, we overproduced and purified MotA of the hyperthermophilic bacterium Aquifex aeolicus. A chemical crosslinking experiment revealed that MotA formed a multimeric complex, most likely a tetramer. The three-dimensional structure of the purified MotA, reconstructed by electron microscopy single particle imaging, consisted of a slightly elongated globular domain and a pair of arch-like domains with spiky projections, likely to correspond to the transmembrane and cytoplasmic domains, respectively. We show that MotA molecules can form a stable tetrameric complex without MotB, and for the first time, demonstrate the cytoplasmic structure of the stator.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Flagella/metabolism , Amino Acids/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Detergents/metabolism , Surface Properties
13.
Cytoskeleton (Hoboken) ; 73(7): 365-74, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27169557

ABSTRACT

Filopodia are finger-like protrusions at the leading edge of migrating cells that play a crucial antennal function during cell motility. It is known that actin filaments are bundled hexagonally and provide rigidity to filopodia by virtue of fascin, which plays a central role in actin filament bundling. However, the molecular mechanisms underlying their formation remain unclear. Here, we observed the filopodia of intact whole cells fixed by rapid freezing and revealed their three-dimensional structure by cryo-electron tomography and image processing; the actin filament bundling structure by fascin was clarified at high resolution under physiological conditions. It was found that actin filaments in vivo were more numerous than in bundles reconstructed in vitro, and each filopodial actin filament had limited variability in helical twisting. In addition, statistical analysis of actin filament bundles unveiled their detailed architecture. In filopodia, actin filaments had highly ordered structures, and the shift between cross-links of each adjacent actin filament was approximately 2.7 nm, similar to the monomer repeat of actin filaments. We then proposed a plausible actin-fascin cross-link model at the amino acid level and identified three fascin binding sites on two adjacent actin filaments: one filament bound fascin at two discrete, widely separated regions and the other bound fascin in a single small region. We propose that these two different binding modalities should confer rigid bundles that retain flexibility and dynamic performance. © 2016 Wiley Periodicals, Inc.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Pseudopodia/metabolism , Actin Cytoskeleton/ultrastructure , Animals , Carrier Proteins/metabolism , Cell Line , Cryoelectron Microscopy , Mice , Microfilament Proteins/metabolism , Pseudopodia/ultrastructure , Rats
14.
Nucleic Acids Res ; 42(3): 1644-55, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24234442

ABSTRACT

The centromere is a specific genomic region upon which the kinetochore is formed to attach to spindle microtubules for faithful chromosome segregation. To distinguish this chromosomal region from other genomic loci, the centromere contains a specific chromatin structure including specialized nucleosomes containing the histone H3 variant CENP-A. In addition to CENP-A nucleosomes, we have found that centromeres contain a nucleosome-like structure comprised of the histone-fold CENP-T-W-S-X complex. However, it is unclear how the CENP-T-W-S-X complex associates with centromere chromatin. Here, we demonstrate that the CENP-T-W-S-X complex binds preferentially to ∼ 100 bp of linker DNA rather than nucleosome-bound DNA. In addition, we find that the CENP-T-W-S-X complex primarily binds to DNA as a (CENP-T-W-S-X)2 structure. Interestingly, in contrast to canonical nucleosomes that negatively supercoil DNA, the CENP-T-W-S-X complex induces positive DNA supercoils. We found that the DNA-binding regions in CENP-T or CENP-W, but not CENP-S or CENP-X, are required for this positive supercoiling activity and the kinetochore targeting of the CENP-T-W-S-X complex. In summary, our work reveals the structural features and properties of the CENP-T-W-S-X complex for its localization to centromeres.


Subject(s)
Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA, Superhelical/metabolism , Animals , Cell Line , Chickens , Chromosomal Proteins, Non-Histone/chemistry , DNA/metabolism , Kinetochores/metabolism , Nucleosomes/metabolism
15.
Structure ; 20(3): 440-9, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22405003

ABSTRACT

Rad51 forms a helical filament on single-stranded DNA and promotes strand exchange between two homologous DNA molecules during homologous recombination. The Swi5-Sfr1 complex interacts directly with Rad51 and stimulates strand exchange. Here we describe structural and functional aspects of the complex. Swi5 and the C-terminal core domain of Sfr1 form an essential activator complex with a parallel coiled-coil heterodimer joined firmly together via two previously uncharacterized leucine-zipper motifs and a bundle. The resultant coiled coil is sharply kinked, generating an elongated crescent-shaped structure suitable for transient binding within the helical groove of the Rad51 filament. The N-terminal region of Sfr1, meanwhile, has an interface for binding of Rad51. Our data suggest that the snug fit resulting from the complementary geometry of the heterodimer activates the Rad51 filament and that the N-terminal domain of Sfr1 plays a role in the efficient recruitment of the Swi5-Sfr1 complex to the Rad51 filaments.


Subject(s)
Models, Molecular , Multiprotein Complexes/chemistry , Protein Conformation , Rad51 Recombinase/chemistry , Schizosaccharomyces pombe Proteins/chemistry , Crystallography, X-Ray , Protein Binding
16.
Extremophiles ; 15(4): 529-39, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21656171

ABSTRACT

The eukaryotic GINS heterotetramer, consisting of Sld5, Psf1, Psf2, and Psf3, participates in "CMG complex" formation with mini-chromosome maintenance (MCM) and Cdc45 as a key component of a replicative helicase. There are only two homologs of the GINS proteins in Archaea, and these proteins, Gins51 and Gins23, form a heterotetrameric GINS with a 2:2 molar ratio. The Pyrococcus furiosus GINS stimulates the ATPase and helicase activities of its cognate MCM, whereas the Sulfolobus solfataricus GINS does not affect those activities of its cognate MCM, although the proteins bind each other. Intriguingly, Thermoplasma acidophilum, as well as many euryarchaea, have only one gene encoding the sequence homologous to that of archaeal Gins protein (Gins51) on the genome. In this study, we investigated the biochemical properties of the gene product (TaGins51). A gel filtration and electron microscopy revealed that TaGins51 forms a homotetramer. A physical interaction between TaGins51 and TaMcm was detected by a surface plasmon resonance analysis. Unexpectedly, TaGins51 inhibited the ATPase activity, but did not affect the helicase activity of its cognate MCM. These results suggest that another factor is required to form a stable helicase complex with MCM and GINS at the replication fork in T. acidophilum cells.


Subject(s)
Archaeal Proteins/metabolism , DNA Replication/physiology , DNA, Archaeal/biosynthesis , DNA-Binding Proteins/metabolism , Multienzyme Complexes/metabolism , Thermoplasma/enzymology , Archaeal Proteins/genetics , DNA, Archaeal/genetics , DNA-Binding Proteins/genetics , Multienzyme Complexes/genetics , Thermoplasma/metabolism
17.
BMC Biol ; 9: 28, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21527023

ABSTRACT

BACKGROUND: In the early stage of eukaryotic DNA replication, the template DNA is unwound by the MCM helicase, which is activated by forming a complex with the Cdc45 and GINS proteins. The eukaryotic GINS forms a heterotetramer, comprising four types of subunits. On the other hand, the archaeal GINS appears to be either a tetramer formed by two types of subunits in a 2:2 ratio (α2ß2) or a homotetramer of a single subunit (α4). Due to the low sequence similarity between the archaeal and eukaryotic GINS subunits, the atomic structures of the archaeal GINS complexes are attracting interest for comparisons of their subunit architectures and organization. RESULTS: We determined the crystal structure of the α2ß2 GINS tetramer from Thermococcus kodakaraensis (TkoGINS), comprising Gins51 and Gins23, and compared it with the reported human GINS structures. The backbone structure of each subunit and the tetrameric assembly are similar to those of human GINS. However, the location of the C-terminal small domain of Gins51 is remarkably different between the archaeal and human GINS structures. In addition, TkoGINS exhibits different subunit contacts from those in human GINS, as a consequence of the different relative locations and orientations between the domains. Based on the GINS crystal structures, we built a homology model of the putative homotetrameric GINS from Thermoplasma acidophilum (TacGINS). Importantly, we propose that a long insertion loop allows the differential positioning of the C-terminal domains and, as a consequence, exclusively leads to the formation of an asymmetric homotetramer rather than a symmetrical one. CONCLUSIONS: The DNA metabolizing proteins from archaea are similar to those from eukaryotes, and the archaeal multi-subunit complexes are occasionally simplified versions of the eukaryotic ones. The overall similarity in the architectures between the archaeal and eukaryotic GINS complexes suggests that the GINS function, directed through interactions with other protein components, is basically conserved. On the other hand, the different subunit contacts, including the locations and contributions of the C-terminal domains to the tetramer formation, imply the possibility that the archaeal and eukaryotic GINS complexes contribute to DNA unwinding reactions by significantly different mechanisms in terms of the atomic details.


Subject(s)
Archaeal Proteins/chemistry , Chromosomal Proteins, Non-Histone/chemistry , Thermococcus/metabolism , Amino Acid Sequence , Archaeal Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Replication , Humans , Molecular Sequence Data , Multiprotein Complexes/chemistry , Sequence Alignment , Structural Homology, Protein , Sulfolobus solfataricus/genetics , Sulfolobus solfataricus/metabolism , Thermococcus/genetics
18.
FEMS Microbiol Lett ; 318(1): 10-7, 2011 May.
Article in English | MEDLINE | ID: mdl-21291495

ABSTRACT

The formation of nonspecific ion channels by small oligomeric amyloid intermediates is toxic to the host's cellular membranes. Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) are major virulence factors of Vibrio parahaemolyticus. We have previously reported the crystal structure of TDH tetramer with the central channel. We have also identified the molecular mechanism underlying the paradoxical responses to heat treatment of TDH, known as the Arrhenius effect, which is the reversible amyloidogenic property. In the present report, we describe the biophysical properties of TRH, which displays 67% amino acid similarity with TDH. Molecular modeling provided a good fit of the overall structure of TDH and TRH. Size-exclusion chromatography, ultracentrifugation, and transmission electron microscopy revealed that TRH formed tetramer in solution. These toxins showed similar hemolytic activity on red blood cells. However, TRH had less amyloid-like structure than TDH analyzed by thioflavin T-binding assay and far-UV circular dichroism spectra. These data indicated that amyloidogenicity upon heating is not essential for the membrane disruption of erythrocytes, but the maintenance of tetrameric structure is indispensable for the hemolytic activity of the TDH and TRH.


Subject(s)
Hemolysin Proteins/chemistry , Hemolysin Proteins/toxicity , Vibrio parahaemolyticus/pathogenicity , Virulence Factors/chemistry , Virulence Factors/toxicity , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Circular Dichroism , Erythrocytes/microbiology , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Hemolysis , Hot Temperature , Humans , Protein Multimerization , Protein Stability , Vibrio parahaemolyticus/chemistry , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism
19.
Proc Natl Acad Sci U S A ; 108(5): 1845-9, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21245343

ABSTRACT

DNA replication in archaea and eukaryotes is executed by family B DNA polymerases, which exhibit full activity when complexed with the DNA clamp, proliferating cell nuclear antigen (PCNA). This replication enzyme consists of the polymerase and exonuclease moieties responsible for DNA synthesis and editing (proofreading), respectively. Because of the editing activity, this enzyme ensures the high fidelity of DNA replication. However, it remains unclear how the PCNA-complexed enzyme temporally switches between the polymerizing and editing modes. Here, we present the three-dimensional structure of the Pyrococcus furiosus DNA polymerase B-PCNA-DNA ternary complex, which is the core component of the replisome, determined by single particle electron microscopy of negatively stained samples. This structural view, representing the complex in the editing mode, revealed the whole domain configuration of the trimeric PCNA ring and the DNA polymerase, including protein-protein and protein-DNA contacts. Notably, besides the authentic DNA polymerase-PCNA interaction through a PCNA-interacting protein (PIP) box, a novel contact was found between DNA polymerase and the PCNA subunit adjacent to that with the PIP contact. This contact appears to be responsible for the configuration of the complex specific for the editing mode. The DNA was located almost at the center of PCNA and exhibited a substantial and particular tilt angle against the PCNA ring plane. The obtained molecular architecture of the complex, including the new contact found in this work, provides clearer insights into the switching mechanism between the two distinct modes, thus highlighting the functional significance of PCNA in the replication process.


Subject(s)
DNA Polymerase beta/metabolism , DNA/metabolism , Proliferating Cell Nuclear Antigen/metabolism , DNA/chemistry , DNA Polymerase beta/chemistry , Glutamic Acid/metabolism , Microscopy, Electron , Models, Molecular , Proliferating Cell Nuclear Antigen/chemistry , Pyrococcus/enzymology , Streptavidin/metabolism
20.
J Biol Chem ; 285(21): 16267-74, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20335168

ABSTRACT

Thermostable direct hemolysin (TDH) is a major virulence factor of Vibrio parahaemolyticus that causes pandemic foodborne enterocolitis mediated by seafood. TDH exists as a tetramer in solution, and it possesses extreme hemolytic activity. Here, we present the crystal structure of the TDH tetramer at 1.5 A resolution. The TDH tetramer forms a central pore with dimensions of 23 A in diameter and approximately 50 A in depth. Pi-cation interactions between protomers comprising the tetramer were indispensable for hemolytic activity of TDH. The N-terminal region was intrinsically disordered outside of the pore. Molecular dynamic simulations suggested that water molecules permeate freely through the central and side channel pores. Electron micrographs showed that tetrameric TDH attached to liposomes, and some of the tetramer associated with liposome via one protomer. These findings imply a novel membrane attachment mechanism by a soluble tetrameric pore-forming toxin.


Subject(s)
Bacterial Proteins/chemistry , Hemolysin Proteins/chemistry , Protein Multimerization , Vibrio parahaemolyticus/chemistry , Virulence Factors/chemistry , Bacterial Proteins/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Crystallography, X-Ray , Hemolysin Proteins/metabolism , Liposomes/chemistry , Liposomes/metabolism , Protein Structure, Quaternary , Protein Structure, Tertiary , Vibrio parahaemolyticus/metabolism , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...