Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 20(1): 200, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32143593

ABSTRACT

BACKGROUND: Rabies is a deadly preventable viral disease that affects all warm-blooded animals and widespread in many regions including Africa. The disease remains of major public health importance in Uganda. The purpose of this study was to establish Knowledge, Attitude, Practice (KAP) of Rabies in Moyo and Ntoroko districts and to characterize Rabies virus (RABV) strains from seven districts of Uganda with consistent prevalence of rabies. METHODS: KAP survey data were collected based on animal biting history by interviewing the head of the veterinary departments, the medical centers and selected households from the study sites. Data were obtained from 84 households in Ntoroko and Moyo districts. Thirty-five (35) brain samples were collected from bovine, dogs, goats, foxes, jackals ad sheep between 2011 and 2013. Samples were tested using fluorescent antibody test (FAT), One step RT-PCR (following RNA extraction) and partial RABV N gene was sequenced by Sanger method before phylogenetic and phylogeographic analyses of sequences. RESULTS: Scarcity of post-exposure prophylaxis services in the health centers was noted. Poor attitude of wound washing and deficiency of knowledge on how to handle wounds related to dog bites and the significance among household participants lacked. There is a high risk of rabies infection due to a limited dog's vaccination. Dog biting episodes in humans were of 75.00 and 62.50% in Moyo and Ntoroko districts respectively. Twenty-seven (27) samples tested positive for rabies by FAT and PCR. Ugandan sequences were closely related (97% nucleotide id) to the rabies virus sequences from Tanzania, Rwanda, Burundi, Nigeria, Central African Republic and Sudan with both the "Africa 1A" and "Africa 1B" RABV clades represented. A putative new clade 1D was also detected. CONCLUSIONS: Rabies remains a public health hazard in Uganda. There is urgent need to establish advocacy programs in both schools and communities to curtail the spread of rabies. Increasing the knowledge regarding wound washing, post-exposure prophylaxis and dogs vaccination would enhance prevention of rabies. A strong collaboration between medical and veterinary sectors under a one health platform is required to ensure sufficient preventative services to the communities.


Subject(s)
Health Knowledge, Attitudes, Practice , Rabies virus/isolation & purification , Rabies/diagnosis , Adolescent , Adult , Animals , Bites and Stings , Brain/virology , Child , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Dog Diseases/virology , Dogs , Female , Humans , Male , Phylogeny , Phylogeography , Post-Exposure Prophylaxis , RNA, Viral/blood , Rabies/epidemiology , Rabies/virology , Rabies virus/classification , Rabies virus/genetics , Uganda , Young Adult
2.
BMC Vet Res ; 16(1): 66, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32085763

ABSTRACT

BACKGROUND: Lumpy skin disease (LSD) is an infectious viral disease of cattle caused by a Capripoxvirus. LSD has substantial economic implications, with infection resulting in permanent damage to the skin of affected animals which lowers their commercial value. In Uganda, LSD is endemic and cases of the disease are frequently reported to government authorities. This study was undertaken to molecularly characterize lumpy skin disease virus (LSDV) strains that have been circulating in Uganda between 2017 and 2018. Secondly, the study aimed to determine the phylogenetic relatedness of Ugandan LSDV sequences with published sequences, available in GenBank. RESULTS: A total of 7 blood samples and 16 skin nodule biopsies were screened for LSDV using PCR to confirm presence of LSDV nucleic acids. PCR positive samples were then characterised by amplifying the GPCR gene. These amplified genes were sequenced and phylogenetic trees were constructed. Out of the 23 samples analysed, 15 were positive for LSDV by PCR (65.2%). The LSDV GPCR sequences analysed contained the unique signatures of LSDV (A11, T12, T34, S99, and P199) which further confirmed their identity. Sequence comparison with vaccine strains revealed a 12 bp deletion unique to Ugandan outbreak strains. Phylogenetic analysis indicated that the LSDV sequences from this study clustered closely with sequences from neighboring East African countries and with LSDV strains from recent outbreaks in Europe. It was noted that the sequence diversity amongst LSDV strains from Africa was higher than diversity from Eurasia. CONCLUSION: The LSDV strains circulating in Uganda were closely related with sequences from neighboring African countries and from Eurasia. Comparison of the GPCR gene showed that outbreak strains differed from vaccine strains. This information is necessary to understand LSDV molecular epidemiology and to contribute knowledge towards the development of control strategies by the Government of Uganda.


Subject(s)
Lumpy Skin Disease/virology , Lumpy skin disease virus/genetics , Lumpy skin disease virus/isolation & purification , Animals , Cattle , Disease Outbreaks/veterinary , Lumpy Skin Disease/blood , Lumpy Skin Disease/epidemiology , Lumpy skin disease virus/classification , Phylogeny , Polymerase Chain Reaction/veterinary , Receptors, Chemokine/genetics , Skin/virology , Uganda/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...