Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(27): eadm9118, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959307

ABSTRACT

Whereas the genesis of carbonatitic rare earth element (REE) deposits has long been a focus of study, the controls on mobilization and mineralization of REEs during magmatic-hydrothermal processes still remain open to debate. Here, we present our investigation of the dissolution and crystallization of REE (fluor)carbonate minerals in alkaline carbonate brine-melts up to 850°C and 11.6 kbar. Our results show that REEs are soluble in Na2CO3 brine-melts, achieving concentrations exceeding 8 weight % at temperatures above 650°C. The addition of calcium and/or fluoride has minimal impact on REE mobilization, whereas introduction of silica suppresses REE solubilities by half, due to britholite formation above 550°C. Upon cooling, sodium and REEs combine to crystallize in burbankite or carbocernaite in sodium-enriched brine-melts, even at fluoride saturation. However, while the brine-melts contain substantial ferro- or aluminosilicate, REE mineralization in fluorcarbonates occurs after sufficient sodium precipitation in alkaline silicate minerals, hence revealing how silicate and sodium carbonate govern REE mineralization.

2.
Bioengineering (Basel) ; 11(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38671793

ABSTRACT

Chitosan nanoparticles (CS-NPs) are currently under investigation for a wide range of applications in nanomedicine. We investigated the structural, morphological, and molecular properties of CS-NPs synthesized via ionic gelation and designed specifically for drug delivery. The CS-NPs were prepared at concentrations ranging from 0.25 to 1.0% w/v. The 1.0% w/v CS-NPs were also functionalized with polyethylene oxide (PEO) alone and with a diblock copolymer of PEO and polypropylene glycol (PPG). The average nanoparticle size determined from TEM imaging is in the 11.3 to 14.8 nm range. The XRD and TEM analyses reveal a semi-crystalline structure with a degree of crystallinity dependent upon the nature of CS-NP functionalization. Functionalizing with PEO had no effect, whereas functionalizing with PEO-PPG resulted in a significant increase in the crystallinity of the 1.0% w/v CS-NPs. Additionally, the CS/TPP concentration (CS:TPP fixed at a 1:1 ratio) did not impact the degree of crystallinity of the CS-NPs. FTIR analysis confirmed the incorporation of TPP with CS and an increase in hydrogen bonding in more crystalline CS-NPs.

3.
Nanomaterials (Basel) ; 13(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37110887

ABSTRACT

Chitosan is a fibrous compound derived from chitin, which is the second most abundant natural polysaccharide and is produced by crustaceans, including crabs, shrimps, and lobsters. Chitosan has all of the important medicinal properties, including biocompatibility, biodegradability, and hydrophilicity, and it is relatively nontoxic and cationic in nature. Chitosan nanoparticles are particularly useful due to their small size, providing a large surface-to-volume ratio, and physicochemical properties that may differ from that of their bulk counterparts; thus, chitosan nanoparticles (CNPs) are widely used in biomedical applications and, particularly, as contrast agents for medical imaging and as vehicles for drug and gene delivery into tumors. Because CNPs are formed from a natural biopolymer, they can readily be functionalized with drugs, RNA, DNA, and other molecules to target a desired result in vivo. Furthermore, chitosan is approved by the United States Food and Drug Administration as being Generally Recognized as Safe (GRAS). This paper reviews the structural characteristics and various synthesis methods used to produce chitosan nanoparticles and nanostructures, such as ionic gelation, microemulsion, polyelectrolyte complexing, emulsification solvent diffusion, and the reverse micellar method. Various characterization techniques and analyses are also discussed. In addition, we review drug delivery applications of chitosan nanoparticles, including for ocular, oral, pulmonary, nasal, and vaginal methodologies, and applications in cancer therapy and tissue engineering.

4.
Sci Rep ; 13(1): 4012, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36899060

ABSTRACT

The water dissolution mechanism in silicate melts under high pressures is not well understood. Here we present the first direct structure investigation of a water-saturated albite melt to monitor the interactions between water and the network structure of silicate melt at the molecular level. In situ high-energy X-ray diffraction was carried out on the NaAlSi3O8-H2O system at 800 °C and 300 MPa, at the Advanced Photon Source synchrotron facility. The analysis of the X-ray diffraction data was augmented with classical Molecular Dynamics simulations of a hydrous albite melt, incorporating accurate water-based interactions. The results show that metal-oxygen bond breaking at the bridging sites occurs overwhelmingly at the Si site upon reaction with H2O, with subsequent Si-OH bond formation and negligible Al-OH formation. Furthermore, we see no evidence for the dissociation of the Al3+ ion from the network structure upon breaking of the Si-O bond in the hydrous albite melt. The results also indicate that the Na+ ion is an active participant in the modifications of the silicate network structure of the albite melt upon water dissolution at high P-T conditions. We do not find evidence for the Na+ ion dissociating from the network structure upon depolymerization and subsequent formation of NaOH complexes. Instead, our results show that the Na+ ion persists as a structure modifier with a shift away from Na-BO bonding to an increase in the extent of Na-NBO bonding, in parallel with pronounced depolymerization of the network. Our MD simulations show that the Si-O and Al-O bond lengths are expanded by about 6% in the hydrous albite melt compared to those of the dry melt at high P-T conditions. The changes in the network silicate structure of a hydrous albite melt at high pressure and temperature, as revealed in this study, must be considered in the advancement of water dissolution models of hydrous granitic (or alkali aluminosilicate) melts.

5.
ACS Appl Mater Interfaces ; 13(20): 24013-24023, 2021 May 26.
Article in English | MEDLINE | ID: mdl-34000195

ABSTRACT

A series of bimagnetic heterostructured nanocrystals having an antiferromagnetic NiO core and a ferrimagnetic MnxNi1-xO and/or FiM Mn3O4 island nanophase overgrowth has been synthesized under varying aqueous solution pH conditions. The two-step self-assembly process employs a thermal decomposition method to synthesize NiO nanoparticles, followed by growth of the MnxNi1-xO and/or Mn3O4 nanophase over the NiO core using hydrothermal synthesis at pH values ranging from 2.4-7.0. The environmentally benign hydrothermal process involves pH control of the protonation vs hydroxylation reactions occurring at the nanoparticle surface. TEM analysis and Rietveld refinement of XRD data show that three distinct types of heterostructured nanocrystals occur: NiO/MnxNi1-xO core-shell-like heterostructures at the pH of 2.4, mixed NiO/MnxNi1-xO and/or/Mn3O4 core-overgrowth structures for 2.4 < pH < 4.5, and predominantly NiO/Mn3O4 core-island structures for pH > 4.5. The magnetic coercivity and exchange bias of the heterostructured nanocrystals vary systematically with the pH of the aqueous solution used to synthesize the samples. The temperature-dependent magnetization and hysteresis loop data are consistent with the nature of overlayer coverage of the NiO core. Our DFT based calculations show that the MnxNi1-xO phase has ferrimagnetic properties with a stable spin orientation along the ⟨111⟩ orientation. Furthermore, the calculations show that the magnetic anisotropy constant (K1) of the Mn3O4 phase is considerably larger than that of the MnxNi1-xO phase, which is confirmed by our experimental results. The coercivity and exchange bias field are the largest for the NiO/Mn3O4 core-island nanocrystals, synthesized at a pH value of 5.0, with robust values of nearly 6 kOe and 3 kOe, respectively. This work demonstrates the tunability of hydrothermal deposition, and concomitant magnetic coercivity and exchange bias properties, of MnxNi1-xO and/or Mn3O4 nanophase overgrowth over a NiO core with pH, that makes these heterostructured nanocrystals potentially useful for magnetic device, biomedical, and other applications.

6.
Commun Chem ; 4(1): 120, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-36697552

ABSTRACT

Quantitative understanding of uranium transport by high temperature fluids is crucial for confident assessment of its migration in a number of natural and artificially induced contexts, such as hydrothermal uranium ore deposits and nuclear waste stored in geological repositories. An additional recent and atypical context would be the seawater inundated fuel of the Fukushima Daiichi Nuclear Power Plant. Given its wide applicability, understanding uranium transport will be useful regardless of whether nuclear power finds increased or decreased adoption in the future. The amount of uranium that can be carried by geofluids is enhanced by the formation of complexes with inorganic ligands. Carbonate has long been touted as a critical transporting ligand for uranium in both ore deposit and waste repository contexts. However, this paradigm has only been supported by experiments conducted at ambient conditions. We have experimentally evaluated the ability of carbonate-bearing fluids to dissolve (and therefore transport) uranium at high temperature, and discovered that in fact, at temperatures above 100 °C, carbonate becomes almost completely irrelevant as a transporting ligand. This demands a re-evaluation of a number of hydrothermal uranium transport models, as carbonate can no longer be considered key to the formation of uranium ore deposits or as an enabler of uranium transport from nuclear waste repositories at elevated temperatures.

7.
Rev Sci Instrum ; 90(8): 083108, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472666

ABSTRACT

The simple working principles and versatility of the hydrothermal diamond-anvil cell (HDAC) make it highly useful for synchrotron x-ray studies of aqueous and fluid samples at high pressure-temperature (P-T) conditions. However, safety concerns need to be overcome in order to use the HDAC for synchrotron studies of aqueous radioactive samples at high temperatures and pressures. For accomplishment of such hydrothermal experiments of radioactive materials at synchrotron beamlines, the samples are required to be enclosed in a containment system employing three independent layers of airtight sealing at some synchrotron facilities while enabling access to the sample using several experimental probes, including incoming and outgoing x-rays. In this article, we report the design and implementation of a complete radiological safety enclosure system for an HDAC specialized for high P-T x-ray absorption spectroscopy (XAS) measurements of aqueous solutions containing the actinides at synchrotron beamlines. The enclosure system was successfully tested for XAS experiments using the HDAC with aqueous samples containing depleted uranium at temperatures ranging from 25 to 500 °C and pressures ranging from vapor pressure to 350 MPa.

8.
Nanoscale ; 10(4): 2138-2147, 2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29327020

ABSTRACT

Room-temperature ferrimagnetic and superparamagnetic properties, and the magnetic interactions between the core and shell, of our iron-incorporated chromia-based core shell nanoparticles (CSNs) have been investigated using a combination of experimental measurement and density functional theory (DFT) based calculations. We have synthesized CSNs having an epitaxial shell and well-ordered interface properties by utilizing our hydrothermal nanophase epitaxy (HNE) technique. The ferrimagnetic and superparamagnetic properties of the CSNs are manifested beyond room temperature and magnetic measurements reveal that the exchange bias interaction between the antiferromagnetic (AFM) core and ferrimagnetic (FiM) shell persists close to ambient temperature. The DFT calculations confirm the FiM ordering of the Fe-chromia shell. Our calculations show that the FiM ordering is associated with a band gap reduction, Fe-O d-p orbital hybridization, and AFM type Fe-Cr σ type superexchange interaction in the α-Fe0.40Cr1.60O2.92 shell of the CSNs. The novel magnetic core-shell nanoparticles possess a shell comprised of a metastable Fe(ii)-chromia phase, resulting in unique magnetic properties that make them ideal for magnetic device and medicinal applications.

9.
Appl Spectrosc ; 71(10): 2325-2338, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28665140

ABSTRACT

Fitting experimentally measured Raman bands with theoretical model profiles is the basic operation for numerical determination of Raman peak parameters. In order to investigate the effects of peak modeling using various algorithms on peak fitting results, the representative Raman bands of mineral crystals, glass, fluids as well as the emission lines from a fluorescent lamp, some of which were measured under ambient light whereas others under elevated pressure and temperature conditions, were fitted using Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles. From the fitting results of the Raman bands investigated in this study, the fitted peak position, intensity, area and full width at half-maximum (FWHM) values of the measured Raman bands can vary significantly depending upon which peak profile function is used in the fitting, and the most appropriate fitting profile should be selected depending upon the nature of the Raman bands. Specifically, the symmetric Raman bands of mineral crystals and non-aqueous fluids are best fit using Gaussian-Lorentzian or Voigtian profiles, whereas the asymmetric Raman bands are best fit using Pearson type IV profiles. The asymmetric O-H stretching vibrations of H2O and the Raman bands of soda-lime glass are best fit using several Gaussian profiles, whereas the emission lines from a florescent light are best fit using beta profiles. Multiple peaks that are not clearly separated can be fit simultaneously, provided the residuals in the fitting of one peak will not affect the fitting of the remaining peaks to a significant degree. Once the resolution of the Raman spectrometer has been properly accounted for, our findings show that the precision in peak position and intensity can be improved significantly by fitting the measured Raman peaks with appropriate profiles. Nevertheless, significant errors in peak position and intensity were still observed in the results from fitting of weak and wide Raman bands having unnormalized intensity/FWHM ratios lower than 200 counts/cm-1.

10.
Nanoscale ; 8(5): 2937-43, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26781181

ABSTRACT

Mesoporous materials with tailored properties hold great promise for energy harvesting and industrial applications. We have synthesized a novel tungsten bronze mesoporous material (K(x)WO3; x ∼ 0.07) having inverse FDU-12 type pore symmetry and a crystalline framework. In situ small angle X-ray scattering (SAXS) measurements of the mesoporous K(0.07)WO3 show persistence of a highly ordered meso-scale pore structure to high pressure conditions (∼18.5 GPa) and a material with remarkable mechanical strength despite having ∼35% porosity. Pressure dependent in situ SAXS measurements reveal a bulk modulus κ = 44 ± 4 GPa for the mesoporous K(x)WO3 which is comparable to the corresponding value for the bulk monoclinic WO3 (γ-WO3). Evidence from middle angle (MAXS) and wide angle X-ray scattering (WAXS), high-resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy shows that the presence of potassium leads to the formation of a K-bearing orthorhombic tungsten bronze (OTB) phase within a monoclinic WO3 host structure. Our ab initio molecular dynamics calculations show that the formation of the OTB phase provides superior strength to the mesoporous K(0.07)WO3.


Subject(s)
Oxides/chemistry , Tungsten/chemistry , Microscopy, Electron, Transmission , Molecular Dynamics Simulation , Nanostructures/chemistry , Nanostructures/ultrastructure , Porosity , Scattering, Small Angle , Spectrum Analysis, Raman , X-Ray Diffraction
11.
J Synchrotron Radiat ; 19(Pt 5): 797-805, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22898960

ABSTRACT

Radiolysis-induced effects on aqueous tungsten ions are observed to form a precipitate within seconds upon exposure to a synchrotron X-ray micro-beam in a WO(3) + H(2)O system at 873 K and 200 MPa. In situ Fe K-edge energy-dispersive X-ray absorption spectroscopy (ED-XAS) measurements were made on Fe(II)Cl(2) aqueous solutions to 773 K in order to study the kinetics of high-temperature reactions of Fe(2+) and Fe(3+) ions with transient radiolysis species. The radiolytic reactions in a fluid sample within a hydrothermal diamond anvil cell result in oxidation of the Fe(2+) ion at 573 K and reduction of Fe(3+) at temperatures between 673 and 773 K and of the Fe(2+) ion at 773 K. The edge-energy drift evident in the ED-XAS data directly reflects the kinetics of reactions resulting in oxidation and/or reduction of the Fe(2+) and Fe(3+) ions in the aqueous solutions at high temperatures. The oxidation and reduction trends are found to be highly consistent, making reliable determinations of reaction kinetics possible.


Subject(s)
Iron/radiation effects , Tungsten/radiation effects , Water/chemistry , Iron/chemistry , Oxidation-Reduction , Radiation Effects , Synchrotrons , Tungsten/chemistry , X-Rays
12.
Rev Sci Instrum ; 79(11): 115103, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19045909

ABSTRACT

Metal gaskets (Re, Ir, Inconel, or stainless steel) normally used to contain fluid samples in the hydrothermal diamond-anvil cell (HDAC) are sometimes undesirable due to possible contamination and to gasket deformation at high pressures and temperatures resulting in nonisochoric behavior. Furthermore, in x-ray spectroscopic experiments, metal gaskets may attenuate the incident x-ray beam and emitted fluorescence x-rays, and the interaction of scattered radiation with the gasket may produce fluorescence that interferes with the x-ray spectrum of the sample. New arrangements and procedures were tested for the operation of the HDAC without using the metal gaskets. Distilled, de-ionized water was loaded into the sample chamber, a laser-milled recess 300 microm in diameter and approximately 50 microm deep centered in the 1.0 mm face of the lower diamond anvil, and sealed by pressing the top diamond anvil face directly against the lower one without a metal gasket in between. A maximum sample pressure of 202 MPa at 617 degrees C was maintained for a duration of 10 min without evidence of leakage. A small change in fluid density was observed in one experiment where the sample was held at 266 MPa at 708 degrees C for 10 min. The gasketless HDAC was also employed in x-ray absorption spectroscopy experiments, where, in addition to the sample chamber in the lower diamond, two grooves were milled at a 90 degrees angle to each other around the sample chamber to minimize the attenuation of incident and fluorescent x rays. With a minimum distance between the sample chamber and the grooves of 80 microm, a pressure of 76 MPa at 500 degrees C was maintained for 2 h with no change in the original fluid density.


Subject(s)
Diamond/chemistry , Specimen Handling/instrumentation , Absorptiometry, Photon , Atmospheric Pressure , Equipment Design , Temperature , Time Factors , Water/chemistry
13.
Rev Sci Instrum ; 78(5): 053904, 2007 May.
Article in English | MEDLINE | ID: mdl-17552838

ABSTRACT

A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to approximately 900 degrees C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly.


Subject(s)
Diamond/chemistry , Niobium/chemistry , Nitric Oxide/chemistry , Silicates/chemistry , Specimen Handling/instrumentation , Spectrometry, X-Ray Emission/instrumentation , Synchrotrons/instrumentation , Equipment Design , Equipment Failure Analysis , Phase Transition , Reproducibility of Results , Rheology/instrumentation , Sensitivity and Specificity , Solutions , Spectrometry, X-Ray Emission/methods , Temperature , Transition Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...