Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Plant Cell Rep ; 34(10): 1835-48, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26152769

ABSTRACT

KEY MESSAGE: An efficient, reproducible, and genotype-independent in planta transformation has been developed for sugarcane using setts as explant. Traditional Agrobacterium-mediated genetic transformation and in vitro regeneration of sugarcane is a complex and time-consuming process. Development of an efficient Agrobacterium-mediated transformation protocol, which can produce a large number of transgenic plants in short duration is advantageous. Hence, in the present investigation, we developed a tissue culture-independent in planta genetic transformation system for sugarcane using setts collected from 6-month-old sugarcane plants. The sugarcane setts (nodal cuttings) were infected with three Agrobacterium tumefaciens strains harbouring pCAMBIA 1301-bar plasmid, and the transformants were selected against BASTA(®). Several parameters influencing the in planta transformation such as A. tumefaciens strains, acetosyringone, sonication and exposure to vacuum pressure, have been evaluated. The putatively transformed sugarcane plants were screened by GUS histochemical assay. Sugarcane setts were pricked and sonicated for 6 min and vacuum infiltered for 2 min at 500 mmHg in A. tumefaciens C58C1 suspension containing 100 µM acetosyringone, 0.1 % Silwett L-77 showed the highest transformation efficiency of 29.6 % (with var. Co 62175). The three-stage selection process completely eliminated the chimeric transgenic sugarcane plants. Among the five sugarcane varieties evaluated using the standardized protocol, var. Co 6907 showed the maximum transformation efficiency (32.6 %). The in planta transformation protocol described here is applicable to transfer the economically important genes into different varieties of sugarcane in relatively short time.


Subject(s)
Agrobacterium tumefaciens/genetics , Plants, Genetically Modified/genetics , Saccharum/genetics , Transformation, Genetic/genetics
2.
Protoplasma ; 251(3): 591-601, 2014 May.
Article in English | MEDLINE | ID: mdl-24150424

ABSTRACT

An efficient and reproducible Agrobacterium-mediated in planta transformation was developed in Jatropha curcas. The various factors affecting J. curcas in planta transformation were optimized, including decapitation, Agrobacterium strain, pin-pricking, vacuum infiltration duration and vacuum pressure. Simple vegetative in vivo cleft grafting method was adopted in the multiplication of transformants without the aid of tissue culture. Among the various parameters evaluated, decapitated plants on pin-pricking and vacuum infiltrated at 250 mmHg for 3 min with the Agrobacterium strain EHA 105 harbouring the binary vector pGA 492 was proved to be efficient in all terms with a transformation efficiency of 62.66%. Transgene integration was evinced by the GUS histochemical analysis, and the GUS positive plants were subjected to grafting. Putatively transformed J. curcas served as "Scion" and the wild type J. curcas plant severed as "Stock". There was no occurrence of graft rejection and the plants were then confirmed by GUS histochemical analysis, polymerase chain reaction (PCR) and Southern hybridization. Genetic stability of the grafted plants was evaluated by using randomly amplified polymorphic DNA (RAPD), marker which showed 100% genetic stability between mother and grafted plants. Thus, an efficient in planta transformation and grafting based multiplication of J. curcas was established.


Subject(s)
DNA, Plant/genetics , Jatropha/genetics , Gene Transfer Techniques , Genetic Vectors , Jatropha/growth & development , Plants, Genetically Modified , Transformation, Genetic
3.
Genomics & Informatics ; : 71-75, 2014.
Article in English | WPRIM (Western Pacific) | ID: wpr-41692

ABSTRACT

The tRNA structure contains conserved modifications that are responsible for its stability and are involved in the initiation and accuracy of the translation process. tRNA modification enzymes are prevalent in bacteria, archaea, and eukaryotes. tRNA Gm18 methyltransferase (TrmH) and tRNA m1G37 methyltransferase (TrmD) are prevalent and essential enzymes in bacterial populations. TrmH involves itself in methylation process at the 2'-OH group of ribose at the 18th position of guanosine (G) in tRNAs. TrmD methylates the G residue next to the anticodon in selected tRNA subsets. Initially, m1G37 modification was reported to take place on three conserved tRNA subsets (tRNA(Arg), tRNA(Leu), tRNA(Pro)); later on, few archaea and eukaryotes organisms revealed that other tRNAs also have the m1G37 modification. The present study reveals Gm18, m1G37 modification, and positions of m1G that take place next to the anticodon in tRNA sequences. We selected extremophile organisms and attempted to retrieve the m1G and Gm18 modification bases in tRNA sequences. Results showed that the Gm18 modification G residue occurs in all tRNA subsets except three tRNAs (tRNA(Met), tRNA(Pro), tRNA(Val)). Whereas the m1G37 modification base G is formed only on tRNA(Arg), tRNA(Leu), tRNA(Pro), and tRNA(His), the rest of the tRNAs contain adenine (A) next to the anticodon. Thus, we hypothesize that Gm18 modification and m1G modification occur irrespective of a G residue in tRNAs.


Subject(s)
Adenine , Anticodon , Archaea , Bacteria , Eukaryota , Guanosine , Methylation , Ribose , RNA, Transfer , RNA, Transfer, Arg , RNA, Transfer, His , RNA, Transfer, Leu , RNA, Transfer, Pro
4.
Plant Cell Rep ; 32(10): 1557-74, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23749098

ABSTRACT

KEY MESSAGE: An efficient, reproducible and genotype-independent in planta transformation has been standardized for sugarcane using seed as explant. Transgenic sugarcane production through Agrobacterium infection followed by in vitro regeneration is a time-consuming process and highly genotype dependent. To obtain more number of transformed sugarcane plants in a relatively short duration, sugarcane seeds were infected with Agrobacterium tumefaciens EHA 105 harboring pCAMBIA 1304-bar and transformed plants were successfully established without undergoing in vitro regeneration. Various factors affecting sugarcane seed transformation were optimized, including pre-culture duration, acetosyringone concentration, surfactants, co-cultivation, sonication and vacuum infiltration duration. The transformed sugarcane plants were selected against BASTA(®) and screened by GUS and GFP visual assay, PCR and Southern hybridization. Among the different combinations and concentrations tested, when 12-h pre-cultured seeds were sonicated for 10 min and 3 min vacuum infiltered in 100 µM acetosyringone and 0.1 % Silwett L-77 containing Agrobacterium suspension and co-cultivated for 72-h showed highest transformation efficiency. The amenability of the standardized protocol was tested on five genotypes. It was found that all the tested genotypes responded favorably, though CoC671 proved to be the best responding cultivar with 45.4 % transformation efficiency. The developed protocol is cost-effective, efficient and genotype independent without involvement of any tissue culture procedure and can generate a relatively large number of transgenic plants in approximately 2 months.


Subject(s)
Agrobacterium tumefaciens , Genetic Engineering/methods , Saccharum/genetics , Seeds/genetics , Acetophenones/chemistry , DNA, Plant/genetics , Gene Transfer Techniques , Genes, Reporter , Genotype , Plants, Genetically Modified/genetics , Sonication , Surface-Active Agents/chemistry , Transformation, Genetic
5.
Appl Biochem Biotechnol ; 168(3): 681-96, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22843063

ABSTRACT

Adventitious root cultures derived from leaf derived callus of Withania somnifera (L.) Dunal were treated with methyl jasmonate and salicylic acid independently. Biomass accumulation, culture age, elicitation period, and culture duration were optimized for higher withanolides production in the two best-responding varieties collected from Kolli hills (Eastern Ghats) and Cumbum (Western Ghats) of Tamil Nadu, India. Between the two elicitors, salicylic acid (SA) improved the production of major withanolides (withanolide A, withanolide B, withaferin A, and withanone) as well as minor constituents (12-deoxy withastramonolide, withanoside V, and withanoside IV) in the Kolli hills variety. Treatment of root biomass (11.70 g FW) on 30-day-old adventitious root cultures with 150 µM SA for 4 h elicitor exposure period resulted in the production of 64.65 mg g(-l) dry weight (DW) withanolide A (48-fold), 33.74 mg g(-l) DW withanolide B (29-fold), 17.47 mg g(-l) DW withaferin A (20-fold), 42.88 mg g(-l) DW withanone (37-fold), 5.34 mg g(-l) DW 12-deoxy withastramonolide (nine fold), 7.23 mg g(-l) DW withanoside V (seven fold), and 9.45 mg g(-l) DW withanoside IV (nine fold) after 10 days of elicitation (40th day of culture) when compared to untreated cultures. This is the first report on the use of elicitation strategy on the significant improvement in withanolides production in the adventitious root cultures of W. somnifera.


Subject(s)
Acetates/metabolism , Cell Culture Techniques/methods , Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Roots/metabolism , Salicylic Acid/metabolism , Withania/metabolism , Withanolides/metabolism , Withania/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...