Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206723

ABSTRACT

Properties of nanolayers can substantially differ from those of bulky materials, in part due to pronounced interface effects. It is known that combinations of layers of heavy and ferromagnetic metals leads to the appearance of specific spin textures induced by interface-induced Dzyaloshinskyi-Moria interaction (DMI), which attracts much interest and requires further studies. In this paper, we study magneto-optical effects in two- and three-layer films composed of a few nanometer thick Co layer adjacent to nanofilms of non-magnetic materials (Pt, W, Cu, Ta, MgO). For experimental studies of the interface magnetization-induced effects, we used the optical second harmonic generation (SHG) technique known for its high sensitivity to the symmetry breaking. We found that the structural asymmetry leads to the increase of the averaged SHG intensity, as well as to the magnetic field-induced effects in SHG. Moreover, by choosing the proper geometry of the experiment, we excluded the most studied linear in magnetization SHG contributions and, thus, succeeded in studying higher order in magnetization and non-local magnetic effects. We revealed odd in magnetization SHG effects consistent with the phenomenological description involving inhomogeneous (gradient) magnetization distribution at interfaces and found them quite pronounced, so that they should be necessarily taken into account when analyzing the non-linear magneto-optical response of nanostructures.

2.
Opt Express ; 29(2): 2106-2111, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726411

ABSTRACT

Magnetic nanostructures reveal unique interface induced properties that differ from those of bulk materials, thus magnetization distributions in interface regions are of high interest. Meanwhile, direct measurement of magnetization distribution in layered nanostructures is a complicated task. Here we study magnetic field induced effects in optical second harmonic generation (SHG) in three-layer ferromagnetic / heavy metals nano films. For a certain experimental geometry, which excludes the appearance of magnetooptical effects for homogeneously magnetized structures, magnetization induced SHG intensity variation is observed. Symmetry analysis of the SHG intensity dependencies on external magnetic field shows that the nonlinear source terms proportional to the out-of-plane gradient component of magnetization govern the observed effect.

3.
Sci Rep ; 10(1): 11729, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678150

ABSTRACT

The photoactive Orange Carotenoid Protein (OCP) plays a key role in cyanobacterial photoprotection. In OCP, a single non-covalently bound keto-carotenoid molecule acts as a light intensity sensor, while the protein is responsible for forming molecular contacts with the light-harvesting antenna, the fluorescence of which is quenched by OCP. Activation of this physiological interaction requires signal transduction from the photoexcited carotenoid to the protein matrix. Recent works revealed an asynchrony between conformational transitions of the carotenoid and the protein. Intrinsic tryptophan (Trp) fluorescence has provided valuable information about the protein part of OCP during its photocycle. However, wild-type OCP contains five Trp residues, which makes extraction of site-specific information impossible. In this work, we overcame this problem by characterizing the photocycle of a fully photoactive OCP variant (OCP-3FH) with only the most critical tryptophan residue (Trp-288) in place. Trp-288 is of special interest because it forms a hydrogen bond to the carotenoid's keto-oxygen to keep OCP in its dark-adapted state. Using femtosecond pump-probe fluorescence spectroscopy we analyzed the photocycle of OCP-3FH and determined the formation rate of the very first intermediate suggesting that generation of the recently discovered S* state of the carotenoid in OCP precedes the breakage of the hydrogen bonds. Therefore, following Trp fluorescence of the unique photoactive OCP-3FH variant, we identified the rate of the H-bond breakage and provided novel insights into early events accompanying photoactivation of wild-type OCP.


Subject(s)
Bacterial Proteins/metabolism , Carotenoids/chemistry , Tryptophan/chemistry , Bacterial Proteins/genetics , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Spectrometry, Fluorescence
4.
Adv Mater ; 29(15)2017 Apr.
Article in English | MEDLINE | ID: mdl-28112830

ABSTRACT

An ultrathin nonlinear optical (NLO) organic surface composed of numerous self-assembled frustum-shaped whispering-gallery-mode resonators displays both two-photon luminescence and second-harmonic-generation signals. A super-second-order increase of the NLO intensity with respect to pump power confirms the microlasing action and practical usefulness of the NLO organic surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...