Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 660: 982-992, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30743982

ABSTRACT

This study focuses on the intensification of a photochemical UVC/H2O2 system using a mili-photoreactor (NETmix) for a better and faster elimination of oxytetracycline (OTC) from urban wastewater. This mili-photoreactor comprises a network of small cylindrical chambers and prismatic transport channels sealed by a UVC transparent quartz slab allowing unique properties. Since light has a profound effect on the photochemical process, UVC photons distribution over the reaction medium was investigated using a multiple UVC lamp design (4, 6 or 11 W) allocated in parallel or perpendicular to the solution movement. In addition, the effect of other operating variables, such as oxidant dosage (100-900 mg L-1), oxidant feed configuration (single entry or continuous multi-injection) and flow rate (50-100 L h-1) was studied. A kinetic model able to describe the OTC oxidation by the UVC/H2O2 photochemical system in the mili-photoreactor was also developed. Moreover, matrix effect was evaluated by spiking OTC in a secondary effluent from an urban WWTP. In this case, OTC degradation was inhibited in about 2 to 3 times due to the presence of organic/inorganic substances (soluble and particulate), inherent to the real matrix, that act as scavenger of oxidant species and as UVC light filter. The NETmix mili-photoreactor presented high photochemical space time yield (PSTY) values when compared with a conventional tubular photoreactor. This highlights the NETmix capacity to enhance UVC/H2O2 processes through an homogeneous light distribution over the entire reaction medium.

2.
Photochem Photobiol Sci ; 17(9): 1179-1188, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30028472

ABSTRACT

A micro-meso-structured reactor (NETmix) was used for the first time to promote photochemical UVC/H2O2 processes. The NETmix photoreactor consists of a network of chambers and channels, where the liquid flows, sealed with a quartz slab with high UVC transparency. Due to the small size of channels and chambers, the NETmix presents a uniform irradiance through the entire reactor depth, short molecular diffusion distances and large specific interfacial areas, maximizing the pollutant/oxidant contact. In this study, the NETmix photoreactor was evaluated for As(iii) oxidation to As(v) using a photochemical UVC/H2O2 system. The effect of the UVC lamp power (4, 6 or 11 W), the number of UVC lamps (2 or 3 lamps) and the UVC lamp layout (parallel or perpendicular to the flow direction) was evaluated, in order to ensure uniform irradiation of the entire reaction mixture. The optimum H2O2 concentration for each light distribution system was also evaluated. At the best configuration, 3 lamps of 11 W positioned parallel to the flow direction, total As(iii) oxidation ([As(iii)]0 = 1.33 × 10-2 mM) was achieved in 15 min with an absorbed photon flux density of 1.9 × 10-1 einstein per m3 per s. Significant differences were highlighted between the photon flux actually received in the photoreactor and the radiant power emitted by the lamp. A kinetic model able to represent the As(iii) oxidation employing UVC radiation and H2O2 in a micro-meso-structured reactor was presented. The photochemical space time yield (PSTY) values obtained for the micro-meso-structured reactor are higher than for conventional batch reactors, showing that the NETmix technology can be a good solution for application in photochemical processes.

3.
Appl Biochem Biotechnol ; 182(4): 1290-1306, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28078652

ABSTRACT

The aim of this work was to remove the dyes Reactive Blue 221 (RB 221) and Reactive Blue 198 (RB 198) of synthetic effluent using the immobilized enzyme horseradish peroxidase (HRP) in Ca-alginate beads. Experimental parameters affecting the dye removal process such as the effect of pH, temperature, hydrogen peroxide concentration, mass capsules, and reuse were evaluated, and a numerical model of mass transfer was developed. A maximum removal of 93 and 75%, respectively, for the dyes RB 221 and RB 198, at pH 5.5 and temperature of 30 °C, concentration of hydrogen peroxide of 43.75 µM for dye RB 221 and 37.5 µM for the dye of RB 198 was obtained. A removal reaction of 180 min for RB 221 and 240 min for RB 198 was observed. Three reuse cycles of use of immobilized enzyme were achieved for both dyes. The numerical model proposed led to a good fit compared to experimental data. The HRP enzyme immobilized in Ca-alginate capsules showed a great potential for biotechnological applications, especially for the removal of reactive dyes.


Subject(s)
Alginates/chemistry , Coloring Agents/isolation & purification , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Microspheres , Biocatalysis , Coloring Agents/chemistry , Environmental Pollutants/chemistry , Environmental Pollutants/isolation & purification , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Temperature
4.
Environ Sci Pollut Res Int ; 24(3): 2364-2380, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27815851

ABSTRACT

Cow bone char was investigated as sorbent for the defluoridation of aqueous solutions. The cow bone char was characterized in terms of its morphology, chemical composition, and functional groups present on the bone char surface using different analytical techniques: SEM, EDS, N2-BET method, and FTIR. Batch equilibrium studies were performed for the bone chars prepared using different procedures. The highest sorption capacities for fluoride were obtained for the acid washed (q = 6.2 ± 0.5 mg/g) and Al-doped (q = 6.4 ± 0.3 mg/g) bone chars. Langmuir and Freundlich models fitted well the equilibrium sorption data. Fluoride removal rate in batch system is fast in the first 5 h, decreasing after this time until achieving equilibrium due to pore diffusion. The presence of carbonate and bicarbonate ions in the aqueous solution contributes to a decrease of the fluoride sorption capacity of the bone char by 79 and 31 %, respectively. Regeneration of the F-loaded bone char using 0.5 M NaOH solution leads to a sorption capacity for fluoride of 3.1 mg/g in the second loading cycle. Fluoride breakthrough curve obtained in a fixed-bed column presents an asymmetrical S-shaped form, with a slow approach of C/C 0 â†’ 1.0 due to pore diffusion phenomena. Considering the guideline value for drinking water of 1.5 mg F-/L, as recommended by World Health Organization, the service cycle for fluoride removal was of 71.0 h ([F-]feed âˆ¼ 9 mg/L; flow rate = 1 mL/min; m sorbent = 12.6 g). A mass transfer model considering the pore diffusion was able to satisfactorily describe the experimental data obtained in batch and continuous systems.


Subject(s)
Bone and Bones , Fluorides , Water Purification/methods , Adsorption , Animals , Cattle , Diffusion , Female , Hydrogen-Ion Concentration , Kinetics , Phosphates , Solutions
5.
Water Res ; 90: 354-368, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26766159

ABSTRACT

In this study, the removal of zinc from galvanization wastewaters was performed in a fixed bed column packed with brown macro-algae Laminaria hyperborea, acting as a natural cation exchanger (resin). The rinse wastewater presents a zinc concentration between 9 and 22 mg/L, a high concentration of light metals (mainly Na and Ca), a high conductivity (0.5-1.5 mS/cm) and a low organic content (DOC = 7-15 mg C/L). The zinc speciation diagram showed that approximately 80% of zinc is in the form of Zn(2+) and ≅20% as ZnSO4, considering the effluent matrix. From all operational conditions tested for zinc uptake (17 < bed height<27 cm, 4.5 < flow rate<18.2 BV/h, 0.8 < particle equivalent diameter<2.0 mm), the highest useful capacity (7.1 mg Zn/g algae) was obtained for D/dp = 31, L/D = 11, 9.1 BV/h, τ = 6.4 min, corresponding to a service capacity of 124 BV (endpoint of 2 mg Zn/L). Elution was faster and near to 100% effective using 10 BV of HCl (1 M, 3.0%, 363 g HCl/L of resin), for flow rates higher than 4.5 BV/h. Calcium chloride solution (0.1 M) was selected as the best regenerant, allowing the reuse of the natural resin for more than 3 saturation/elution/regeneration cycles. The best operation conditions were scaled-up and tested in a pre-pilot plant. The scale-up design of the cation exchange process was proposed for the treatment of 2.4 m(3)/day of galvanization wastewater, resulting in an estimated reactants cost of 2.44 €/m(3).


Subject(s)
Ion Exchange , Laminaria , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Purification/instrumentation , Water Purification/methods , Zinc/analysis , Adsorption , Biomass , Cations , Chromatography, Ion Exchange/methods , Equipment Design , Hydrogen-Ion Concentration , Ions , Wastewater , Water , Water Microbiology , Water Pollutants, Chemical/isolation & purification , Zinc/chemistry , Zinc/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...