Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 600(7888): 231-234, 2021 12.
Article in English | MEDLINE | ID: mdl-34880428

ABSTRACT

Planet formation occurs around a wide range of stellar masses and stellar system architectures1. An improved understanding of the formation process can be achieved by studying it across the full parameter space, particularly towards the extremes. Earlier studies of planets in close-in orbits around high-mass stars have revealed an increase in giant planet frequency with increasing stellar mass2 until a turnover point at 1.9 solar masses (M⊙), above which the frequency rapidly decreases3. This could potentially imply that planet formation is impeded around more massive stars, and that giant planets around stars exceeding 3 M⊙ may be rare or non-existent. However, the methods used to detect planets in small orbits are insensitive to planets in wide orbits. Here we demonstrate the existence of a planet at 560 times the Sun-Earth distance from the 6- to 10-M⊙ binary b Centauri through direct imaging. The planet-to-star mass ratio of 0.10-0.17% is similar to the Jupiter-Sun ratio, but the separation of the detected planet is about 100 times wider than that of Jupiter. Our results show that planets can reside in much more massive stellar systems than what would be expected from extrapolation of previous results. The planet is unlikely to have formed in situ through the conventional core accretion mechanism4, but might have formed elsewhere and arrived to its present location through dynamical interactions, or might have formed via gravitational instability.

2.
Rep Prog Phys ; 82(1): 016901, 2019 01.
Article in English | MEDLINE | ID: mdl-30057369

ABSTRACT

The direct collapse model for the formation of massive black holes has gained increased support as it provides a natural explanation for the appearance of bright quasars already less than a billion years from the Big Bang. In this paper we review a recent scenario for direct collapse that relies on multi-scale gas inflows initiated by the major merger of massive gas-rich galaxies at z > 6, where gas has already achieved solar composition. Hydrodynamical simulations undertaken to explore our scenario show that supermassive, gravitationally bound compact gaseous disks weighing a billion solar masses, only a few pc in size, form in the nuclei of merger remnants in less than 105 yr. These could later produce a supermassive protostar or supermassive star at their center via various mechanisms. Moreover, we present a new analytical model, based on angular momentum transport in mass-loaded gravitoturbulent disks. This naturally predicts that a nuclear disk accreting at rates exceeding [Formula: see text] yr-1, as seen in the simulations, is stable against fragmentation irrespective of its metallicity. This is at variance with conventional direct collapse scenarios, which require the suppression of gas cooling in metal-free protogalaxies for gas collapse to take place. Such high accretion rates reflect the high free-fall velocities in massive halos appearing only at z < 10, and occur naturally as a result of the efficient angular momentum loss provided by the merger dynamics. We discuss the implications of our scenario on the observed population of high-z quasars and on its evolution to lower redshifts using a semi-analytical galaxy formation model. Finally, we consider the intriguing possibility that the secondary gas inflows in the unstable disks might drive gas to collapse into a supermassive black hole directly via the General Relativistic radial instability. Such dark collapse route could generate gravitational wave emission detectable via the future Laser Interferometer Space Antenna (LISA).

3.
Science ; 298(5599): 1756-9, 2002 Nov 29.
Article in English | MEDLINE | ID: mdl-12459581

ABSTRACT

The evolution of gravitationally unstable protoplanetary gaseous disks has been studied with the use of three-dimensional smoothed particle hydrodynamics simulations with unprecedented resolution. We have considered disks with initial masses and temperature profiles consistent with those inferred for the protosolar nebula and for other protoplanetary disks. We show that long-lasting, self-gravitating protoplanets arise after a few disk orbital periods if cooling is efficient enough to maintain the temperature close to 50 K. The resulting bodies have masses and orbital eccentricities similar to those of detected extrasolar planets.


Subject(s)
Evolution, Planetary , Planets , Computer Simulation , Gases , Gravitation , Hydrogen , Jupiter
SELECTION OF CITATIONS
SEARCH DETAIL
...