Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Microsc Res Tech ; 81(7): 693-703, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29575275

ABSTRACT

This article introduces an analysis-aware microscopy video compression method designed for microscopy videos that are consumed by analysis algorithms rather than by the human visual system. We define the quality of a microscopy video based on the level of preservation of analysis results. We evaluated our method with a bead tracking analysis program. For the same error level in the analysis result, our method can achieve 1,000× compression on certain test microscopy videos. Compared with a previous technique that yields exactly the exact same results by analysis algorithms, our method gives more flexibility for a user to control the quality. A modification to the new method also provides faster compression speed.

2.
Microsc Res Tech ; 78(12): 1055-61, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26435032

ABSTRACT

The large amount video data produced by multi-channel, high-resolution microscopy system drives the need for a new high-performance domain-specific video compression technique. We describe a novel compression method for video microscopy data. The method is based on Pearson's correlation and mathematical morphology. The method makes use of the point-spread function (PSF) in the microscopy video acquisition phase. We compare our method to other lossless compression methods and to lossy JPEG, JPEG2000, and H.264 compression for various kinds of video microscopy data including fluorescence video and brightfield video. We find that for certain data sets, the new method compresses much better than lossless compression with no impact on analysis results. It achieved a best compressed size of 0.77% of the original size, 25× smaller than the best lossless technique (which yields 20% for the same video). The compressed size scales with the video's scientific data content. Further testing showed that existing lossy algorithms greatly impacted data analysis at similar compression sizes.

3.
J Biomed Discov Collab ; 4: 4, 2009 Apr 19.
Article in English | MEDLINE | ID: mdl-19521951

ABSTRACT

Two-dimensional (2D) videoconferencing has been explored widely in the past 15-20 years to support collaboration in healthcare. Two issues that arise in most evaluations of 2D videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor depth perception. To address these problems, we are exploring the use of a small array of cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of events taking place within. The 3D views could be sent across wired or wireless networks to remote healthcare professionals equipped with fixed displays or with mobile devices such as personal digital assistants (PDAs). The remote professionals' viewpoints could be specified manually or automatically (continuously) via user head or PDA tracking, giving the remote viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing of the dynamic reconstructions. We call this idea remote 3D medical collaboration. In this article we motivate and explain the vision for 3D medical collaboration technology; we describe the relevant computer vision, computer graphics, display, and networking research; we present a proof-of-concept prototype system; and we present evaluation results supporting the general hypothesis that 3D remote medical collaboration technology could offer benefits over conventional 2D videoconferencing in emergency healthcare.

SELECTION OF CITATIONS
SEARCH DETAIL