Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters










Publication year range
1.
Exp Gerontol ; 124: 110649, 2019 09.
Article in English | MEDLINE | ID: mdl-31276778

ABSTRACT

Testicular aging is linked to histological, morphological and functional alterations. In the present study, we investigated whether aging affects the inflammatory and oxidative status in the testis by comparing young adult, middle-aged adult and aged hamsters. The Syrian hamster, a thoroughly studied seasonal breeder, was chosen as the experimental model since it allows further investigations on the role of photoperiod and melatonin in testicular aging with a minimal impact of the experimental intervention on the animal well-being and the subsequent results achieved. In testes of aged hamsters, we found a decrease in melatonin concentration, a thickening of the wall of the seminiferous tubules as well as a significant increase in IL-1ß, NLRP3 and cyclooxygenase 2 expression, PGD2 production, macrophages numbers, lipid peroxidation and anti-oxidant enzyme catalase levels. Interestingly, when aged hamsters were transferred from a long day (LD) to a short day (SD) photoperiod for 16 weeks, testicular melatonin concentration increased while local inflammatory processes and oxidative stress were clearly reduced. Overall, these results indicate that melatonin might display anti-inflammatory and anti-oxidant capacities in the aged testes.


Subject(s)
Aging/physiology , Melatonin/physiology , Oxidative Stress , Photoperiod , Testis/pathology , Animals , Cricetinae , Male , Mesocricetus
2.
Andrology ; 6(5): 756-765, 2018 09.
Article in English | MEDLINE | ID: mdl-29869453

ABSTRACT

Contractile smooth muscle-like peritubular cells build the wall of seminiferous tubules in men. They are crucial for sperm transport and complement the functions of Sertoli cells by secreting factors, including glial cell line-derived neurotrophic factor. Previous studies revealed that they also secrete the chemokine C-X-C motif chemokine ligand 12 (CXCL12), which has known roles in spermatogenesis. Peritubular cells express the androgen receptor (AR), which is retained in isolated human testicular peritubular cells. We aimed to explore AR-regulated functions in human testicular peritubular cells. Bearing in mind that infertile men often have high aromatase activity, which may lower intratesticular androgen concentrations, an animal model for male infertility was studied. These mice display an age-dependent loss in spermatogenesis due to high aromatase activity. Human testicular peritubular cells were exposed to dihydrotestosterone or the antiandrogen flutamide. We studied AR, smooth muscle cell markers, glial cell line-derived neurotrophic factor and 15 secreted factors previously identified, including CXCL12. We used qPCR, Western blotting, ELISA or selected reaction monitoring (SRM). In the animal model for male infertility, we employed qPCR and immunohistochemistry. Dihydrotestosterone increased AR and flutamide prevented these actions. The smooth muscle cell markers calponin and smooth muscle actin were likewise increased, while cell size or cellular proliferation was not changed. Dihydrotestosterone did not increase glial cell line-derived neurotrophic factor or CXCL12 secretion but increased levels of serine proteinase inhibitor (SERPIN) E1. The animal model for male infertility with high aromatase activity showed reduced numbers of AR-immunoreactive testicular peritubular cells, suggesting that altered androgen and/or oestrogen levels could influence AR-mediated responses in peritubular cells. Androgens act on human testicular peritubular cells to enhance AR levels, their contractile phenotype and to modulate the secretion of some secreted factors. This study suggests that some aspects of human peritubular cell functions are regulated by androgens.


Subject(s)
Infertility, Male/metabolism , Receptors, Androgen/physiology , Seminiferous Tubules/physiology , Animals , Aromatase/metabolism , Cells, Cultured , Chemokine CXCL12/metabolism , Disease Models, Animal , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Receptors, Androgen/metabolism , Seminiferous Tubules/metabolism
3.
Mol Hum Reprod ; 24(8): 401-410, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29846669

ABSTRACT

STUDY QUESTION: Are monkey testicular peritubular cells (MKTPCs) from the common marmoset monkey (Callithrix jacchus) a suitable translational model for the study of human testicular peritubular cells (HTPCs)? SUMMARY ANSWER: MKTPCs can be isolated and propagated in vitro, retain characteristic markers for testicular peritubular cells and their proteome strongly (correlation coefficient of 0.78) overlaps with the proteome of HTPCs. WHAT IS KNOWN ALREADY: Smooth-muscle-like peritubular cells form the wall of seminiferous tubules, transport sperm, are immunologically active, secrete a plethora of factors and may contribute to the spermatogonial stem cell niche. Mechanistic studies are hampered by heterogeneity of human samples. STUDY DESIGN, SIZE, DURATION: We established a culture method for MKTPCs and characterized these cells from six young adult animals (2-3 years). To examine whether they qualify as a translational model we also examined HTPCs from seven men and compared the proteomes of both groups. PARTICIPANTS/MATERIALS, SETTING, METHODS: We used explant cultures to obtain MKTPCs, which express smooth muscle markers (calponin (CNN1), smooth muscle actin (ACTA2)), lack FSH-receptors (FSHR) and LH-receptors (LHCGR), but possess androgen receptors (AR). MKTPCs can be passaged at least up to eight times, without discernable phenotypic changes. Mass-spectrometry-based analyses of the MKTPC and HTPC proteomes were performed. MAIN RESULTS AND THE ROLE OF CHANCE: We established a method for isolation and cultivation of MKTPCs, and provide a comprehensive analysis of their protein repertoire. The results let us conclude that MKTPCs are suitable as a non-human primate model to study peritubular cell functions. LARGE SCALE DATA: List of identified proteins in MKTPCs by liquid chromatography-tandem mass spectrometry is accessible at the ProteomeXchange (identifier PXD009394). LIMITATIONS, REASON FOR CAUTION: This is an in vitro cellular non-human primate model used to provide a window into the role of these cells in the human testis. WIDER IMPLICATIONS OF THE FINDINGS: Previous studies with HTPCs from patients revealed a degree of heterogeneity, possibly due to age, lifestyle and medical history of the individual human donors. We anticipate that the new translational model, derived from young healthy non-human primates, may allow us to circumvent these issues and may lead to a better understanding of the role of peritubular cells. STUDY FUNDING AND COMPETION OF INTEREST(S): This work was supported by grants from the Deutsche Forschungsgemeinschaft (MA 1080/27-1; AR 362/9-1; BE 2296/8-1). The authors declare no competing financial interests.


Subject(s)
Seminiferous Tubules/cytology , Spermatogenesis/physiology , Spermatogonia/cytology , Testis/cytology , Actins/metabolism , Animals , Callithrix , Cells, Cultured , Humans , Male , Mass Spectrometry , Proteome/metabolism , Receptors, FSH/metabolism , Receptors, LH/metabolism , Seminiferous Tubules/metabolism , Spermatogonia/metabolism , Testis/metabolism
4.
J Neuroendocrinol ; 30(10): e12599, 2018 10.
Article in English | MEDLINE | ID: mdl-29645316

ABSTRACT

To maintain the health and well-being of all mammals, numerous aspects of physiology are controlled by neuroendocrine mechanisms. These mechanisms ultimately enable communication between neurones and glands throughout the body and are centrally mediated by neuropeptides and/or steroid hormones. A recent session at the International Workshop in Neuroendocrinology highlighted the essential roles of some of these neuropeptide and steroid hormone mediators in the neuroendocrine regulation of stress-, reproduction- and behaviour-related processes. Accordingly, the present review highlights topics presented in this session, including the role of the neuropeptides corticotrophin-releasing factor and gonadotrophin-releasing hormone in stress and reproductive physiology, respectively. Additionally, it details an important role for gonadal sex steroids in the development of behavioural sex preference.


Subject(s)
Brain/physiology , Gonadal Steroid Hormones/physiology , Neuropeptides/physiology , Neurosecretory Systems/physiology , Animals , Humans , Neurons/physiology , Reproduction , Stress, Physiological , Stress, Psychological
5.
Sci Rep ; 6: 37128, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27849015

ABSTRACT

Changes in the wall of seminiferous tubules in men with impaired spermatogenesis imply sterile inflammation of the testis. We tested the hypothesis that the cells forming the wall of seminiferous tubules, human testicular peritubular cells (HTPCs), orchestrate inflammatory events and that Toll like receptors (TLRs) and danger signals from the extracellular matrix (ECM) of this wall are involved. In cultured HTPCs we detected TLRs, including TLR2. A TLR-2 ligand (PAM) augmented interleukin 6 (IL-6), monocyte chemo-attractant protein-1 (MCP-1) and pentraxin 3 (PTX3) in HTPCs. The ECM-derived proteoglycan biglycan (BGN) is secreted by HTPCs and may be a TLR2-ligand at HTPCs. In support, recombinant human BGN increased PTX3, MCP-1 and IL-6 in HTPCs. Variable endogenous BGN levels in HTPCs derived from different men and differences in BGN levels in the tubular wall in infertile men were observed. In testes of a systemic mouse model for male infertility, testicular sterile inflammation and elevated estradiol (E2) levels, BGN was also elevated. Hence we studied the role of E2 in HTPCs and observed that E2 elevated the levels of BGN. The anti-estrogen ICI 182,780 blocked this action. We conclude that TLR2 and BGN contribute to sterile inflammation and infertility in man.


Subject(s)
Biglycan/metabolism , Infertility, Male/metabolism , Seminiferous Tubules/metabolism , Toll-Like Receptor 2/metabolism , Adult , Biglycan/pharmacology , C-Reactive Protein/metabolism , Chemokine CCL2/metabolism , Estradiol/analogs & derivatives , Estradiol/biosynthesis , Estradiol/pharmacology , Fulvestrant , Humans , Infertility, Male/pathology , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/metabolism , Male , Middle Aged , Seminiferous Tubules/pathology , Serum Amyloid P-Component/metabolism
6.
J Ovarian Res ; 9(1): 62, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27686972

ABSTRACT

BACKGROUND: A previous study showed that dopamine (DA), which is contained in follicular fluid (FF) from IVF patients, strongly increased the production of reactive oxygen species (ROS) by cultured human granulosa cells (GCs). ROS, including H2O2, are assumed to play roles in ovarian physiology and pathology. Ovarian DA could be derived from the circulation, ovarian innervation and/or unknown ovarian sources. L-DOPA is the direct precursor of DA in its synthetic pathway. It was not yet described in FF. We examined L-DOPA levels in FF from IVF patients. As it may exert anti-oxidative and ROS-scavenging functions, we studied whether it exerts such actions in human GCs and whether DOPA-decarboxylase (DDC), the enzyme converting L-DOPA to DA, is expressed in the human ovary. RESULTS: ELISA measurements revealed that human IVF-derived FF contains L-DOPA. In cultured human GCs automated confluence analyses showed that L-DOPA enhanced their survival. This is in contrast to the actions of DA, which reduced cell survival. A dose-dependent mode of action of L-DOPA was identified using a fluorescent ROS indicator. The results showed that it antagonized intracellular ROS accumulation induced by exogenous H2O2. DDC was absent in follicular GCs, but immunohistochemistry identified it in theca cells (TCs) of large follicles in the human ovary. Laser micro-dissection followed by RT-PCR corroborated the expression. DDC was also identified in the steroidogenic cells of the corpus luteum. CONCLUSIONS: L-DOPA in FF is an antioxidant factor and exerts positive influences on GCs. Ovarian DA is derived from L-DOPA and has opposite actions. Exogenous L-DOPA is a standard therapy for Parkinson's disease, and the results raise the possibility that it may be able to exert positive actions as an antioxidant in ovarian conditions, as well.

7.
Sci Rep ; 5: 12820, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26333415

ABSTRACT

Male fertility depends on spermatogenesis, which takes place in the seminiferous tubules of the testis. This compartment is devoid of blood vessels, which are however found in the wall of the seminiferous tubules. Our proteomic study using cultured human testicular peritubular cells (HTPCs) i.e. the cells, which form this wall, revealed that they constitutively secrete pigment epithelium-derived factor, PEDF, which is known to exert anti-angiogenic actions. Immunohistochemistry supports its presence in vivo, in the human tubular wall. Co-culture studies and analysis of cell migration patterns showed that human endothelial cells (HUVECs) are repulsed by HTPCs. The factor involved is likely PEDF, as a PEDF-antiserum blocked the repulsing action. Thus testicular peritubular cells, via PEDF, may prevent vascularization of human seminiferous tubules. Dihydrotestosterone (DHT) increased PEDF (qPCR) in HTPCs, however PEDF expression in the testis of a non-human primate occurs before puberty. Thus PEDF could be involved in the establishment of the avascular nature of seminiferous tubules and after puberty androgens may further reinforce this feature. Testicular microvessels and blood flow are known to contribute to the spermatogonial stem cell niche. Hence HTPCs via control of testicular microvessels may contribute to the regulation of spermatogonial stem cells, as well.


Subject(s)
Eye Proteins/metabolism , Neovascularization, Physiologic/physiology , Nerve Growth Factors/metabolism , Seminiferous Tubules/blood supply , Seminiferous Tubules/metabolism , Serpins/metabolism , Testis/blood supply , Testis/metabolism , Adult , Cells, Cultured , Humans , Male , Young Adult
8.
Cell Death Dis ; 6: e1685, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25766324

ABSTRACT

Proliferation, differentiation and death of ovarian cells ensure orderly functioning of the female gonad during the reproductive phase, which ultimately ends with menopause in women. These processes are regulated by several mechanisms, including local signaling via neurotransmitters. Previous studies showed that ovarian non-neuronal endocrine cells produce acetylcholine (ACh), which likely acts as a trophic factor within the ovarian follicle and the corpus luteum via muscarinic ACh receptors. How its actions are restricted was unknown. We identified enzymatically active acetylcholinesterase (AChE) in human ovarian follicular fluid as a product of human granulosa cells. AChE breaks down ACh and thereby attenuates its trophic functions. Blockage of AChE by huperzine A increased the trophic actions as seen in granulosa cells studies. Among ovarian AChE variants, the readthrough isoform AChE-R was identified, which has further, non-enzymatic roles. AChE-R was found in follicular fluid, granulosa and theca cells, as well as luteal cells, implying that such functions occur in vivo. A synthetic AChE-R peptide (ARP) was used to explore such actions and induced in primary, cultured human granulosa cells a caspase-independent form of cell death with a distinct balloon-like morphology and the release of lactate dehydrogenase. The RIPK1 inhibitor necrostatin-1 and the MLKL-blocker necrosulfonamide significantly reduced this form of cell death. Thus a novel non-enzymatic function of AChE-R is to stimulate RIPK1/MLKL-dependent regulated necrosis (necroptosis). The latter complements a cholinergic system in the ovary, which determines life and death of ovarian cells. Necroptosis likely occurs in the primate ovary, as granulosa and luteal cells were immunopositive for phospho-MLKL, and hence necroptosis may contribute to follicular atresia and luteolysis. The results suggest that interference with the enzymatic activities of AChE and/or interference with necroptosis may be novel approaches to influence ovarian functions.


Subject(s)
Acetylcholinesterase/biosynthesis , Granulosa Cells/enzymology , Ovarian Follicle/metabolism , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Acetylcholine/metabolism , Acetylcholinesterase/metabolism , Acrylamides/administration & dosage , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Differentiation/genetics , Female , Granulosa Cells/drug effects , Humans , Imidazoles/administration & dosage , Indoles/administration & dosage , Ovarian Follicle/growth & development , Primary Cell Culture , Protein Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Sulfonamides/administration & dosage
9.
Andrology ; 2(5): 695-701, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25052196

ABSTRACT

Besides the two nuclear oestrogen receptors (ESR1/ESR2), the G protein-coupled oestrogen receptor (GPER) was described in the human testis but little is known about testicular GPER during development or male infertility. We performed an immunohistochemical analysis using human and rhesus monkey testicular samples. The results obtained in adult primate testes showed GPER in interstitial and vascular cells as well as in smooth muscle-like peritubular cells, which build the wall of seminiferous tubules. Expression of GPER was also found in cultured human testicular peritubular cells (HPTCs) by Western blotting and RT-PCR/sequencing. Furthermore, as seen in time-lapse videos of cultured cells, addition of a specific GPER agonist (G1) significantly reduced the numbers of HTPCs within 24 h. A GPER antagonist (G15) prevented this action, implying a role for GPER related to the control of cell proliferation or cell death of peritubular cells. Peritubular cell functions and their phenotype change, for example, during post-natal development and in the cases of male infertility. The study of non-human primate samples revealed that GPER in peritubular cells was detectable only from the time of puberty onwards, while in samples from infantile and prepubertal monkeys only interstitial cells showed immunopositive staining. In testicular biopsies of men with mixed atrophy, a reduction or loss of immunoreactive GPER was found in peritubular cells surrounding those tubules, in which spermatogenesis was impaired. In other cases of impaired spermatogenesis, namely when the tubular wall was fibrotically remodelled, a complete loss of GPER was seen. Thus, the observed inverse relation between the state of fertility and GPER expression by peritubular cells implies that the regulation of primate testicular peritubular cells by oestrogens is mediated by GPER in both, health and disease.


Subject(s)
Infertility, Male/metabolism , Leydig Cells/metabolism , Receptors, Estrogen/biosynthesis , Receptors, G-Protein-Coupled/biosynthesis , Seminiferous Tubules/metabolism , Sertoli Cells/metabolism , Animals , Cells, Cultured , Fertility , Humans , Leydig Cells/cytology , Macaca mulatta , Male , Seminiferous Tubules/cytology , Sertoli Cells/cytology , Sexual Maturation , Spermatogenesis
10.
Mol Cell Endocrinol ; 393(1-2): 171-8, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-24970685

ABSTRACT

We observed that peritubular myoid cells in the human testis are immunoreactive for angiotensin II (AngII) receptors (AT1R) and explored AngII actions in cultured human testicular peritubular cells (HTPCs). In response to AngII they contracted within minutes. The AT1R-blocker losartan blocked contraction, implying involvement of AngII and AT1R in intratesticular sperm transport. AngII also significantly increased IL-6 mRNA levels and IL-6 secretion within hours and losartan again prevented this action. This suggests involvement in inflammatory processes, which may play a role in male infertility. AngII can be generated locally by mast cell (MC)-derived chymase (CHY), which cleaves AngI. In testicular biopsies from infertile men we found abundant MCs, which express CHY, within the wall of seminiferous tubules. In contrast, CHY-positive MCs are hardly found in normal human testis. Testicular inflammatory events may fuel processes resulting in impaired spermatogenesis. Therefore therapeutic interference with MCs, CHY or AT1R might be novel options in male infertility.


Subject(s)
Infertility, Male/physiopathology , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/metabolism , Testis/cytology , Testis/metabolism , Cell Physiological Phenomena , Enzyme-Linked Immunosorbent Assay , Humans , Immunohistochemistry , Male , Real-Time Polymerase Chain Reaction
11.
Andrology ; 2(4): 615-22, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24919455

ABSTRACT

Protease activated receptor-2 (PAR-2) is the receptor for the prototype mast cell product tryptase. PAR-2 expression by cells of the human germinal epithelium was reported, but the exact cellular sites of testicular expression remained unknown. That became of interest, because mast cells, expressing tryptase, were found in the walls of seminiferous tubules of patients suffering from sub- and infertility. This location suggested that mast cells via tryptase might be able to influence PAR-2-expressing cells in the germinal epithelium. To explore these points, we used testicular paraffin-embedded sections for immunohistochemistry. PAR-2-positive cells were mostly basally located cells of the seminiferous epithelium, namely spermatogonia. Some stained for the receptor for GDNF (GFRalpha-1), and possibly represent spermatogonial stem cells (SSCs). As true human SSCs could not be examined, we turned to TCam-2 seminoma cells, expressing PAR-2 and stem cell markers, including GFRalpha-1. TCam-2 cells robustly responded to stimulation with a specific PAR-2 agonist (SLIGKV) by increased intracellular Ca(2+) levels. Recombinant tryptase and trypsin, but not a control peptide (VKGILS) evoked this response, implying functional PAR-2. Video imaging and caspase 3/7 assays showed that SLIGKV and tryptase prevented spontaneous apoptosis and increased proliferation of TCam-2 cells. The expression of the marker of pluripotency OCT3/4 was unchanged upon activation of PAR-2, suggesting that the stem cell-like character is not changed. Furthermore, human germ cell cancers were examined. A subset of seminoma and carcinoma in situ samples expressed PAR-2, indicating that yet unknown subgroups exist. Collectively, the descriptive data obtained in human testicular sections, in germ cell cancers and the functional results in TCam-2 cells imply a trophic role of mast cell-derived tryptase for human germ cells. This may be relevant for subtypes of human germ cell cancers, and possibly SSCs. It also raises the possibility that PAR-2 agonists might be useful for the in vitro propagation of human SSCs.


Subject(s)
Germ Cells/metabolism , Infertility, Male/physiopathology , Mast Cells/physiology , Receptor, PAR-2/biosynthesis , Seminiferous Epithelium/metabolism , Biopsy , Cells, Cultured , Glial Cell Line-Derived Neurotrophic Factor Receptors/biosynthesis , Humans , Infertility, Male/pathology , Male , Neoplasms, Germ Cell and Embryonal/metabolism , Neoplasms, Germ Cell and Embryonal/pathology , Seminoma/metabolism , Testis/pathology , Tryptases/metabolism
12.
Andrology ; 2(3): 436-49, 2014 May.
Article in English | MEDLINE | ID: mdl-24659586

ABSTRACT

Melatonin acting through the hypothalamus and pituitary regulates testicular function. In addition, direct actions of melatonin at the testicular level have been recently suggested. We have described that melatonin inhibits androgen production in hamster Leydig cells via melatonin subtype 1a (mel1a) receptors and the local corticotrophin-releasing hormone (CRH) system. The initial events of the melatonin/CRH signalling pathway have also been established. Melatonin and all components of the melatonergic/CRH system were also detected in Leydig cells of infertile men. This study attempted to search for additional targets of melatonin in the human testis, and to investigate the effects of melatonin on proliferation and the oxidative state in these novel target cells. To this aim, evaluation of human testicular biopsies of patients suffering from hypospermatogenesis or Sertoli cell only syndrome and cell culture studies were performed. Melatonergic receptors were found in macrophages (MACs) and mast cells (MCs) of the human testis. In biopsies of patients suffering idiopathic infertility, melatonin testicular concentrations were negatively correlated with MAC number per mm(2) and TNFα, IL1ß and COX2 expression, but positively correlated with the expression of the anti-oxidant enzymes SOD1, peroxiredoxin 1 and catalase. Melatonin inhibited proliferation and the expression of pro-inflammatory cytokines and cyclooxygenase 2 (COX2) in both the human non-testicular THP-1 MAC cell line and primary cell cultures of hamster testicular MACs. In the human HMC-1 MC line, melatonin increased the expression of anti-oxidant enzymes and decreased reactive oxygen species (ROS) generation. The results reveal new testicular targets of melatonin and describe anti-proliferative and anti-inflammatory effects of this hormone on testicular MACs. Furthermore, melatonin might provide protective effects against oxidative stress in testicular MCs.


Subject(s)
Infertility, Male/metabolism , Macrophages/metabolism , Mast Cells/metabolism , Melatonin/metabolism , Testis/metabolism , Adult , Androgens/biosynthesis , Animals , Anti-Inflammatory Agents , Antioxidants/metabolism , Azoospermia/metabolism , Catalase/biosynthesis , Cell Line , Cell Proliferation , Corticotropin-Releasing Hormone/metabolism , Cricetinae , Cyclooxygenase 2/biosynthesis , Humans , Interleukin-1beta/biosynthesis , Leydig Cells/metabolism , Macrophages/cytology , Male , Mast Cells/cytology , Oligospermia/metabolism , Oxidative Stress , Peroxiredoxins/biosynthesis , Reactive Oxygen Species/analysis , Receptors, Melatonin/antagonists & inhibitors , Receptors, Melatonin/metabolism , Sertoli Cell-Only Syndrome/metabolism , Signal Transduction , Superoxide Dismutase/biosynthesis , Superoxide Dismutase-1 , Tumor Necrosis Factor-alpha/biosynthesis
13.
Life Sci ; 97(2): 129-36, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24361362

ABSTRACT

AIMS: Pigment Epithelium Derived Factor (PEDF) is a multifunctional factor, which was found in mouse ovary and in human ovarian follicular fluid (FF). Its ovarian functions include anti-angiogenic actions. This study aimed to explore other PEDF-actions and the sites of PEDF expression in the human ovary. MATERIALS AND METHODS: We used paraffin-embedded human ovarian sections for PEDF-immunohistochemistry and IVF-derived human granulosa cells (GCs) for RT-PCR, Western blotting and functional studies, including measurement of cell viability (ATP-assay), apoptosis (caspase-assay) and reactive oxygen species (ROS). KEY FINDINGS: Immunohistochemistry revealed PEDF in the cytoplasm of GCs of avascular follicles from the preantral to the antral stage and in FF. PEDF was also found in luteinized GCs of the highly vascularized corpus luteum, a result not in line with a sole anti-angiogenic action. Like GCs in vivo, cultured human luteinizing GCs express PEDF. They also responded to exogenous recombinant PEDF. In low concentrations PEDF did not affect cell viability but caused generation ROS. ROS-induction by PEDF was a concentration-dependent process and may be due to the activity of NADPH oxidase (NOX) type 4 and/or 5, which as we found are expressed by GCs. An antioxidant and apocynin, which inhibits NOX, blocked ROS generation. High levels of exogenous recombinant PEDF induced apoptosis of GCs, which was prevented by antioxidants, implying involvement of ROS. SIGNIFICANCE: PEDF is emerging as an ovarian factor, which has unexpected ROS-augmenting activities in the human ovary. It may be involved in ovarian ROS homeostasis and may contribute to oxidative stress.


Subject(s)
Eye Proteins/metabolism , Granulosa Cells/metabolism , Nerve Growth Factors/metabolism , Ovary/metabolism , Reactive Oxygen Species/metabolism , Serpins/metabolism , Adult , Apoptosis , Blotting, Western , Cell Survival , Cells, Cultured , Dose-Response Relationship, Drug , Eye Proteins/administration & dosage , Female , Humans , Immunohistochemistry , Membrane Proteins/metabolism , NADPH Oxidase 4 , NADPH Oxidase 5 , NADPH Oxidases/metabolism , Nerve Growth Factors/administration & dosage , Reverse Transcriptase Polymerase Chain Reaction , Serpins/administration & dosage , Young Adult
14.
Hum Reprod ; 29(3): 555-67, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24287819

ABSTRACT

STUDY QUESTION: Is the neurotransmitter dopamine (DA) in the human ovary involved in the generation of reactive oxygen species (ROS)? SUMMARY ANSWER: Human ovarian follicular fluid contains DA, which causes the generation of ROS in cultured human granulosa cells (GCs), and alterations of DA levels in follicular fluid and DA uptake/metabolism in GCs in patients with polycystic ovary syndrome (PCOS) are linked to increased levels of ROS. WHAT IS KNOWN ALREADY: DA is an important neurotransmitter in the brain, and the metabolism of DA results in the generation of ROS. DA was detected in human ovarian homogenates, but whether it is present in follicular fluid and plays a role in the follicle is not known. STUDY DESIGN, SIZE AND DURATION: We used human follicular fluid from patients undergoing in vitro fertilization (IVF), GCs from patients with or without PCOS and also employed mathematical modeling to investigate the presence of DA and its effects on ROS. PARTICIPANTS/MATERIALS, SETTING AND METHODS: DA in follicular fluid and GCs was determined by enzyme-linked immunosorbent assay. GC viability, apoptosis and generation of ROS were monitored in GCs upon addition of DA. Inhibitors of DA uptake and metabolism, an antioxidant and DA receptor agonists, were used to study cellular uptake and the mechanism of DA-induced ROS generation. Human GCs were examined for the presence and abundance of transcripts of the DA transporter (DAT; SLC6A3), the DA-metabolizing enzymes monoamine oxidases A/B (MAO-A/B) and catechol-O-methyltransferase and the vesicular monoamine transporter. A computational model was developed to describe and predict DA-induced ROS generation in human GCs. MAIN RESULTS AND ROLE OF CHANCE: We found DA in follicular fluid of ovulatory follicles of the human ovary and in GCs. DAT and MAO-A/B, which are expressed by GCs, are prerequisites for a DA receptor-independent generation of ROS in GCs. Blockers of DAT and MAO-A/B, as well as an antioxidant, prevented the generation of ROS (P < 0.05). Agonists of DA receptors (D1 and D2) did not induce ROS. DA, in the concentration range found in follicular fluid, did not induce apoptosis of cultured GCs. Computational modeling suggested, however, that ROS levels in GCs depend on the concentrations of DA and on the cellular uptake and metabolism. In PCOS-derived follicular fluid, the levels of DA were higher (P < 0.05) in GCs, the transcript levels of DAT and MAO-A/B in GCs were 2-fold higher (P < 0.05) and the DA-induced ROS levels were found to be more than 4-fold increased (P < 0.05) compared with non-PCOS cells. Furthermore, DA at a high concentration induced apoptosis in PCOS-derived GCs. LIMITATIONS, REASONS FOR CAUTION: While the results in IVF-derived follicular fluid and in GCs reveal for the first time the presence of DA in the human follicular compartment, functions of DA could only be studied in IVF-derived GCs, which can be viewed as a cellular model for the periovulatory follicular phase. The full functional importance of DA-induced ROS in small follicles and other compartments of the ovary, especially in PCOS samples, remains to be shown. WIDER IMPLICATIONS OF THE FINDINGS: The results identify DA as a factor in the human ovary, which, via ROS generation, could play a role in ovarian physiology and pathology. The results obtained in samples from women with PCOS suggest the involvement of DA, acting via ROS, in this condition. STUDY FUNDING/COMPETING INTERESTS: This work was supported by a grant from DFG MA1080/17-3 and in part MA1080/19-1. There are no competing interests.


Subject(s)
Dopamine/metabolism , Follicular Fluid/metabolism , Granulosa Cells/metabolism , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Dopamine Agonists/pharmacology , Dopamine Plasma Membrane Transport Proteins/biosynthesis , Female , Granulosa Cells/drug effects , Humans , Polycystic Ovary Syndrome/physiopathology
15.
Andrology ; 1(2): 318-24, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23413143

ABSTRACT

Fibrotic remodelling of the testicular tubular wall is common in human male infertility caused by impaired spermatogenesis. We hypothesized that this morphological change bears witness of an underlying fundamentally altered state of the cells building this wall, that is, peritubular smooth muscle-like cells. This could include a loss of the contractile abilities of these cells and thus be a factor in male infertility. Immune cells are increased in the tubular wall in these cases, hence local immune cell-related factors, including a prostaglandin (PG) metabolite may be involved. To explore these points in the human, we used testicular biopsies, in which tubules with normal spermatogenesis and impaired spermatogenesis are next to each other [mixed atrophy (MA)], normal biopsies and cultured human testicular peritubular cells. Proteins essential for contraction, myosin heavy chain (MYH11), calponin (Cal) and relaxation, cGMP-dependent protein kinase 1 (cGKI), were readily detected by immunohistochemistry and were equally distributed in all peritubular cells of biopsies with normal spermatogenesis. In all biopsies, vascular smooth muscle cells also stained and served as important intrinsic controls, which showed that in MA samples when spermatogenesis was impaired, staining was restricted to only few peritubular cells or was absent. When spermatogenesis was normal, regular peritubular staining became obvious. This pattern suggests complex regulatory influences, which in face of the identical systemic hormonal situation in MA patients, are likely caused by the local testicular micromilieu. The PG metabolite 15dPGJ2 may represent such a factor and it reduced Cal protein levels in peritubular cells from patients with/without impaired spermatogenesis. The documented phenotypic switch of peritubular, smooth muscle-like cells in MA patients may impair the abilities of the afflicted seminiferous tubules to contract and relax and must now be considered as a part of the complex events in male infertility.


Subject(s)
Contractile Proteins/genetics , Infertility, Male/genetics , Seminiferous Tubules/metabolism , Seminiferous Tubules/pathology , Spermatogenesis/genetics , Biomarkers , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Contractile Proteins/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Infertility, Male/metabolism , Male , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Muscle, Smooth, Vascular , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Prostaglandin D2/analogs & derivatives , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sperm Motility , Testis/metabolism , Testis/pathology , Calponins
16.
Mol Cell Endocrinol ; 367(1-2): 41-9, 2013 Mar 10.
Article in English | MEDLINE | ID: mdl-23267835

ABSTRACT

In Leydig cells, hormonal stimulation by LH/hCG entails increased intracellular Ca(2+) levels and steroid production, as well as hyperpolarization of the cell membrane. The large-conductance Ca(2+)-activated K(+)-channel (BK(Ca)) is activated by raised intracellular Ca(2+) and voltage and typically hyperpolarizes the cell membrane. Whether BK(Ca) is functionally involved in steroid production of Leydig cells is not known. In order to explore this point we first investigated the localization of BK(Ca) in human and hamster testes and then used a highly specific toxin, the BK(Ca) blocker iberiotoxin (IbTx), to experimentally dissect a role of BK(Ca). Immunohistochemistry and RT-PCR revealed that adult Leydig cells of both species are endowed with these channels. Ontogeny studies in hamsters indicated that BK(Ca) becomes strongly detectable in Leydig cells only after they acquire the ability to produce androgens. Using purified Leydig cells from adult hamsters, membrane potential changes in response to hCG were monitored. HCG hyperpolarized the cell membrane, which was prevented by the selective BK(Ca) blocker IbTx. Steroidogenic acute regulatory (StAR) mRNA expression and testosterone production were not affected by IbTx under basal conditions but markedly increased when hCG, in submaximal and maximal concentration or when db-cAMP was added to the incubation media. A blocker of K(V)4-channels, expressed by Leydig cells, namely phrixotoxin-2 (PhTx-2) was not effective. In summary, the data reveal BK(Ca) as a crucial part of the signaling cascade of LH/hCG in Leydig cells. The hyperpolarizing effect of BK(Ca) in the Leydig cell membrane appears to set in motion events limiting the production of testosterone evoked by stimulatory endocrine mechanisms.


Subject(s)
Chorionic Gonadotropin/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Leydig Cells/metabolism , Luteinizing Hormone/metabolism , Signal Transduction , Animals , Cricetinae , Fluorescence , Gene Expression Regulation/drug effects , Humans , Leydig Cells/cytology , Leydig Cells/drug effects , Male , Membrane Potentials/drug effects , Mesocricetus , Peptides/pharmacology , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Testosterone/biosynthesis
17.
Hum Reprod ; 27(11): 3249-58, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22888166

ABSTRACT

STUDY QUESTION: Is decorin (DCN), a putative modulator of growth factor (GF) signaling, expressed in the primate ovary and does it play a role in ovarian biology? SUMMARY ANSWER: DCN expression in the theca, the corpus luteum (CL), its presence in the follicular fluid (FF) and its actions revealed in human IVF-derived granulosa cells (GCs), suggest that it plays multiple roles in the ovary including folliculogenesis, ovulation and survival of the CL. WHAT IS KNOWN ALREADY: DCN is a secreted proteoglycan, which has a structural role in the extracellular matrix (ECM) and also interferes with the signaling of multiple GF/GF receptors (GFRs). However, DCN expression and action in the primate ovary has yet to be determined. STUDY DESIGN, SIZE, DURATION: Archival human and monkey ovarian samples were analyzed. Studies were conducted using FF and GC samples collected from IVF patients. PARTICIPANTS/MATERIALS, SETTING, METHODS: Immunohistochemistry, western blotting, RT-PCR, quantitative RT-PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) studies were complemented by cellular studies, including the measurements of intracellular Ca²âº, reactive oxygen species (ROS), epidermal GF receptor (EGFR) phosphorylation by DCN and caspase activity. MAIN RESULTS AND THE ROLE OF CHANCE: Immunohistochemistry revealed strong DCN staining in the connective tissue and follicular thecal compartments, but not in GCs of pre-antral and antral follicles. Pre-ovulatory follicles could not be studied, but DCN was associated with connective tissue of CL samples and the cytoplasm of luteal cells. DCN expression in monkey CL doubled (P < 0.05) towards the end of the luteal lifespan. DCN was found in human FF obtained from IVF patients (mean: 12.9 ng/ml; n = 20) as determined by ELISA. DCN mRNA and/or protein were detected in freshly isolated and cultured, luteinized human GCs. In the latter, exogenous human recombinant DCN increased intracellular Ca²âº levels and induced the production of ROS in a concentration-dependent manner. DCN, like epidermal GF, phosphorylated EGFR significantly (P < 0.05) and reduced the activity of caspase 3/7 in cultured GCs. The data indicate the expression of DCN in the theca of growing follicles, in FF of ovulatory follicles and in the CL. Therefore, DCN may exert paracrine actions via GF/GFR systems in multiple ovarian compartments. LIMITATIONS, REASONS FOR CAUTION: Functional studies were performed in cultures of human luteinized GCs, which are an apt model but may not fully mirror the pre-ovulatory GC compartment or the CL. Other human ovarian cells, including the thecal cells, were not available. WIDER IMPLICATIONS OF THE FINDINGS: In accordance with its evolving roles in other organs, ovarian DCN is an ECM-associated component, which acts as a multifunctional regulator of GF signaling in the primate ovary. DCN may thus be involved in folliculogenesis, ovulation and the regulation of the CL survival in primates. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by Deutsche Forschungsgemeinschaft (DFG) MA1080/17-3 and in part DFG MA1080/21-1 (to AM), NIH grants HD24870 (S.R.O. and R.L.S.), the Eunice Kennedy Shriver NICHD/NIH through cooperative agreement HD18185 as part of the Specialized Cooperative Centers Program in Reproduction and Infertility Research (S.R.O.) and 8P51OD011092-53 for the operation of the Oregon National Primate Research Center (G.A.D., J.D.H., S.R.O. and R.L.S).


Subject(s)
Decorin/metabolism , Extracellular Matrix/metabolism , Luteal Phase/metabolism , Oogenesis , Ovary/metabolism , Ovulation/metabolism , Adult , Animals , Cells, Cultured , Corpus Luteum/cytology , Corpus Luteum/metabolism , Decorin/genetics , ErbB Receptors/metabolism , Female , Follicular Fluid/metabolism , Gene Expression Regulation , Granulosa Cells/cytology , Granulosa Cells/metabolism , Humans , Macaca mulatta , Ovary/cytology , Phosphorylation , Protein Processing, Post-Translational , RNA, Messenger/metabolism , Theca Cells/cytology , Theca Cells/metabolism
18.
Int J Androl ; 35(6): 793-801, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22640168

ABSTRACT

Fibrosis, increased amounts of immune cells and expression of COX-2 in the testes of infertility patients provide circumstantial evidence for a specific testicular milieu, in which reactive oxygen species (ROS) could be increased. If ROS level increase and/or ROS scavengers decrease, the resulting testicular oxidative stress may contribute to human male infertility. Primary peritubular cells of the human testis, from men with normal spermatogenesis (HTPCs) and infertile patients (HTPC-Fs), previously allowed us to identify an end product of COX-2 action, a prostaglandin derivative (15dPGJ2), which acts via ROS to alter the phenotype of peritubular cells, at least in vitro. Using testicular biopsies we now found 15dPGJ2 in patients and hence we started exploring the ROS scavenger systems of the human testis. This system includes catalase, DJ-1, peroxiredoxin 1, SOD 1 and 2, glutathione-S-transferase and HMOX-1, which were identified by RT-PCR/sequencing in HTPCs and HTPC-Fs and whole testes. Catalase, DJ-1, peroxiredoxin 1 and SOD 2 were also detected by Western blots and in part by immunohistochemistry in testicular samples. Western blots of cultured cells further revealed that catalase levels, but not peroxiredoxin 1, SOD 2 or DJ-1 levels, are significantly higher in HTPC-Fs than in HTPCs. This particular difference is correlated with the improved ability of HTPC-Fs to handle ROS, which became evident when cells were exposed to 100 µm H(2)O(2). H(2)O(2) induced stronger responses in HTPCs than in HTPC-Fs, which correlates with the lower level of the H(2)O(2)-degrading defence enzyme catalase in HTPCs. The results provide evidence for an adaptation to elevated ROS levels, which must have occurred in vivo and which persist in vitro in HTPC-Fs. Thus, in infertile men with impaired spermatogenesis elevated ROS levels likely exist, at least in the tubular wall.


Subject(s)
Free Radical Scavengers/metabolism , Infertility, Male/metabolism , Reactive Oxygen Species/metabolism , Testis/metabolism , Base Sequence , Catalase/metabolism , Cells, Cultured , DNA Primers , Humans , Infertility, Male/pathology , Male , Peroxiredoxins/metabolism , Polymerase Chain Reaction , Superoxide Dismutase/metabolism , Testis/enzymology , Testis/pathology
19.
Int J Androl ; 35(4): 550-61, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22413766

ABSTRACT

Decorin (DCN), a component of the extracellular matrix of the peritubular wall and the interstitial areas of the human testis, can interact with growth factor (GF) signalling, thereby blocking downstream actions of GFs. In the present study the expression and regulation of DCN using both human testes and two experimental animal models, namely the rhesus monkey and mouse, were examined. DCN protein was present in peritubular and interstitial areas of adult human and monkey testes, while it was almost undetectable in adult wild type mice. Interestingly, the levels and sites of testicular DCN expression in the monkeys were inversely correlated with testicular maturation markers. A strong DCN expression associated with the abundant connective tissue of the interstitial areas in the postnatal through pre-pubertal phases was observed. In adult and old monkeys the DCN pattern was similar to the one in normal human testes, presenting strong expression at the peritubular region. In the testes of both infertile men and in a mouse model of inflammation associated infertility (aromatase-overexpressing transgenic mice), the fibrotic changes and increased numbers of tumour necrosis factor (TNF)-α-producing immune cells were shown to be associated with increased production of DCN. Furthermore, studies with human testicular peritubular cells isolated from fibrotic testis indicated that TNF-α significantly increased DCN production. The data, thus, show that an increased DCN level is associated with impaired testicular function, supporting our hypothesis that DCN interferes with paracrine signalling of the testis in health and disease.


Subject(s)
Decorin/metabolism , Infertility, Male/pathology , Testis/metabolism , Testis/pathology , Animals , Cells, Cultured , Disease Models, Animal , Extracellular Matrix Proteins/metabolism , Fibrosis , Humans , Inflammation , Macaca mulatta , Male , Mice , Mice, Transgenic , Signal Transduction , Testis/cytology , Tumor Necrosis Factor-alpha/biosynthesis
20.
Endocrinology ; 153(3): 1472-83, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22234472

ABSTRACT

The neurotransmitter norepinephrine (NE) is derived from the sympathetic nervous system and may be involved in the regulation of ovarian functions. Ovarian innervation increases in patients with polycystic ovarian syndrome (PCOS), prompting us to readdress a role of NE in the human ovary. In vitro fertilization-derived granulosa cells (GC), follicular fluids (FF), and ovarian sections were studied. NE was found in FF and freshly isolated GC, yet significantly lower levels of NE were detected in samples from PCOS patients. Furthermore, the metabolite normetanephrine was detected in FF. Together this suggests cellular uptake and metabolism of NE in GC. In accordance, the NE transporter and NE-metabolizing enzymes [catechol-o-methyltransferase (COMT) and monoamine oxidase A] were found in GC, COMT in GC and thecal cells of large human antral follicles in vivo and in cultured GC. Cellular uptake and metabolism of NE also occurred in cultured GC, events that could be blocked pharmacologically. NE, in the range present in FF, is unlikely to affect GC via activation of typical α- or ß-receptors. In line with this assumption, it did not alter phosphorylation of MAPK. However, NE robustly induced the generation of reactive oxygen species (ROS). This action occurred even when receptors were blocked but was prevented by blockers of NE transporter, COMT, and monoamine oxidase A. Thus, NE contributes to the microenvironment of preovulatory human follicles and is lower in PCOS. By inducing the production of ROS in GC, NE is linked to ROS-regulated events, which are emerging as crucial factors in ovarian physiology, including ovulation.


Subject(s)
Granulosa Cells/metabolism , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Norepinephrine/metabolism , Ovary/metabolism , Adenosine Triphosphate/chemistry , Body Mass Index , Caspases/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Female , Granulosa Cells/cytology , Humans , Immunohistochemistry/methods , MAP Kinase Signaling System , Models, Biological , Ovary/cytology , Phosphorylation , Polycystic Ovary Syndrome/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...