Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur J Epidemiol ; 38(9): 973-984, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37490175

ABSTRACT

BACKGROUND: Updated data on the incidence, prevalence, and regional differences of chronic liver disease are missing from many countries. In this study, we aimed to describe time trends, incidence, prevalence, and mortality of a wide range of chronic liver diseases in Sweden. METHODS: In this register-based, nationwide observational study, patients with a register-based diagnosis of chronic liver disease, during 2005-2019, were retrieved from the Swedish National Board of Health and Welfare. Annual age-standardized incidence and mortality rates, and prevalence per 100,000 inhabitants was calculated and stratified on age, sex, and geographical region. RESULTS: The incidence of alcohol-related cirrhosis increased by 47% (2.6% annually), reaching an incidence rate of 13.1/100,000 inhabitants. The incidence rate of non-alcoholic fatty liver disease and unspecified liver cirrhosis increased by 217% and 87% (8.0 and 4.3% annually), respectively, reaching an incidence rate of 15.2 and 18.7/100,000 inhabitants, and a prevalence of 24.7 and 44.8/100,000 inhabitants. Furthermore, incidence rates of chronic hepatitis C declined steeply, but liver malignancies have become more common. The most common causes of liver-related mortality were alcohol-related liver disease and unspecified liver disease. CONCLUSION: The incidence rates of diagnosed non-alcoholic fatty liver disease, alcohol-related cirrhosis, unspecified liver cirrhosis, and liver malignancies have increased during the last 15 years. Worryingly, mortality in several liver diseases increased, likely reflecting increasing incidences of cirrhosis in spite of a decreasing rate of hepatitis C. Significant disparities exist across sex and geographical regions, which need to be considered when allocating healthcare resources.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Incidence , Sweden/epidemiology , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/complications , Prevalence , Liver Cirrhosis/epidemiology , Liver Cirrhosis/etiology , Liver Cirrhosis, Alcoholic/complications , Liver Cirrhosis, Alcoholic/epidemiology , Liver Neoplasms/epidemiology , Liver Neoplasms/etiology , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/etiology
2.
Nutr Neurosci ; 22(12): 877-893, 2019 Dec.
Article in English | MEDLINE | ID: mdl-29697017

ABSTRACT

Objectives: The biological mechanisms linking diet-related obesity and depression remain unclear. Therefore, we examined the impact of high-fat diet (HFD) on murine behaviour, intestinal microbiome, brain metabolome, neuropeptide Y (NPY) expression, and dipeptidyl peptidase-4 (DPP-4) activity.Methods: Male C57Bl/6J mice were fed an HFD (60 kJ% from fat) or control diet (12 kJ% from fat) for 8 weeks, followed by behavioural phenotyping. Caecal microbiome was analysed by 16S rDNA sequencing, brain metabolome by 1H nuclear magnetic resonance, NPY expression by PCR and immunoassay, and dipeptidyl peptidase-4 (DPP-4) activity by enzymatic assay. The effect of a 4-week treatment with imipramine (7 mg/kg/day) and the DPP-4 inhibitor sitagliptin (50 mg/kg/day) on HFD-induced behavioural changes was also tested.Results: HFD led to a depression-like phenotype as revealed by reduced sociability and sucrose preference. In the caecum, HFD diminished the relative abundance of Bacteroidetes and increased the relative abundance of Firmicutes and Cyanobacteria. In the brain, HFD modified the metabolome of prefrontal cortex and striatum, changing the relative concentrations of molecules involved in energy metabolism (e.g. lactate) and neuronal signalling (e.g. γ-aminobutyric acid). The expression of NPY in hypothalamus and hippocampus was decreased by HFD, whereas plasma NPY and DPP-4-like activity were increased. The HFD-induced anhedonia remained unaltered by imipramine and sitagliptin.Discussion: The depression-like behaviour induced by prolonged HFD in mice is associated with distinct alterations of intestinal microbiome, brain metabolome, NPY system, and DPP-4-like activity. Importantly, the HFD-evoked behavioural disturbance remains unaltered by DPP-4 inhibition and antidepressant treatment with imipramine.


Subject(s)
Brain/metabolism , Depression/etiology , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Metabolome/physiology , Neuropeptide Y/metabolism , Animals , Behavior, Animal/physiology , Corpus Striatum/metabolism , Gene Expression , Male , Mice , Mice, Inbred C57BL , Neuropeptide Y/blood , Neuropeptide Y/genetics , Prefrontal Cortex/metabolism , Weight Gain
3.
Sci Rep ; 7: 40968, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28106168

ABSTRACT

Altered levels of colonic peptide YY (PYY) have been reported in patients suffering from functional and inflammatory bowel disorders. While the involvement of neuropeptide Y (NPY) and Y receptors in the regulation of nociception is well established, the physiological role of PYY in somatic and visceral pain is poorly understood. In this work, the role of PYY in pain sensitivity was evaluated using PYY knockout (PYY(-/-)) mice and Y2 receptor ligands. PYY(-/-) mice were more sensitive to somatic thermal pain compared to wild type (WT) mice. Visceral pain was assessed by evaluating pain-related behaviors, mouse grimace scale (MGS) and referred hyperalgesia after intrarectal administration of allyl isothiocyanate (AITC, 1 or 2%) or its vehicle, peanut oil. The pain-related behaviors induced by AITC were significantly exaggerated by PYY deletion, whereas the MGS readout and the referred hyperalgesia were not significantly affected. The Y2 receptor antagonist, BII0246, increased pain-related behaviors in response to intrarectal AITC compared to vehicle treatment while the Y2 receptor agonist, PYY(3-36), did not have a significant effect. These results indicate that endogenous PYY has a hypoalgesic effect on somatic thermal and visceral chemical pain. The effect on visceral pain seems to be mediated by peripheral Y2 receptors.


Subject(s)
Behavior, Animal/drug effects , Behavior, Animal/radiation effects , Hyperalgesia/physiopathology , Peptide YY/deficiency , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Animals , Hot Temperature , Isothiocyanates/administration & dosage , Mice , Mice, Knockout
4.
Brain Behav Immun ; 60: 174-187, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27751870

ABSTRACT

Microbial metabolites are known to affect immune system, brain, and behavior via activation of pattern recognition receptors such as Toll-like receptor 4 (TLR4). Unlike the effect of the TLR4 agonist lipopolysaccharide (LPS), the role of other TLR agonists in immune-brain communication is insufficiently understood. We therefore hypothesized that the TLR2 agonist lipoteichoic acid (LTA) causes immune activation in the periphery and brain, stimulates the hypothalamic-pituitary-adrenal (HPA) axis and has an adverse effect on blood-brain barrier (BBB) and emotional behavior. Since LTA preparations may be contaminated by LPS, an extract of LTA (LTAextract), purified LTA (LTApure), and pure LPS (LPSultrapure) were compared with each other in their effects on molecular and behavioral parameters 3h after intraperitoneal (i.p.) injection to male C57BL/6N mice. The LTAextract (20mg/kg) induced anxiety-related behavior in the open field test, enhanced the circulating levels of particular cytokines and the cerebral expression of cytokine mRNA, and blunted the cerebral expression of tight junction protein mRNA. A dose of LPSultrapure matching the amount of endotoxin/LPS contaminating the LTAextract reproduced several of the molecular and behavioral effects of LTAextract. LTApure (20mg/kg) increased plasma levels of tumor necrosis factor-α (TNF-α), interleukin-6 and interferon-γ, and enhanced the transcription of TNF-α, interleukin-1ß and other cytokines in the amygdala and prefrontal cortex. These neuroinflammatory effects of LTApure were associated with transcriptional down-regulation of tight junction-associated proteins (claudin 5, occludin) in the brain. LTApure also enhanced circulating corticosterone, but failed to alter locomotor and anxiety-related behavior in the open field test. These data disclose that TLR2 agonism by LTA causes peripheral immune activation and initiates neuroinflammatory processes in the brain that are associated with down-regulation of BBB components and activation of the HPA axis, although emotional behavior (anxiety) is not affected. The results obtained with an LTA preparation contaminated with LPS hint at a facilitatory interaction between TLR2 and TLR4, the adverse impact of which on long-term neuroinflammation, disruption of the BBB and mental health warrants further analysis.


Subject(s)
Anxiety/drug therapy , Blood-Brain Barrier/drug effects , Inflammation/chemically induced , Lipopolysaccharides/pharmacology , Teichoic Acids/pharmacology , Animals , Blood-Brain Barrier/metabolism , Cytokines/metabolism , Disease Models, Animal , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Interferon-gamma/metabolism , Lipopolysaccharide Receptors/metabolism , Male , Mice, Inbred C57BL , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
Sci Rep ; 6: 28182, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27305846

ABSTRACT

Environmental enrichment (EE) refers to the provision of a complex and stimulating housing condition which improves well-being, behaviour and brain function of laboratory animals. The mechanisms behind these beneficial effects of EE are only partially understood. In the current report, we describe a link between EE and neuropeptide Y (NPY), based on findings from NPY knockout (KO) mice exposed to EE. Relative to EE-housed wildtype (WT) animals, NPY KO mice displayed altered behaviour as well as molecular and morphological changes in amygdala and hippocampus. Exposure of WT mice to EE reduced anxiety and decreased central glucocorticoid receptor expression, effects which were absent in NPY KO mice. In addition, NPY deletion altered the preference of EE items, and EE-housed NPY KO mice responded to stress with exaggerated hyperthermia, displayed impaired spatial memory, had higher hippocampal brain-derived neurotrophic factor mRNA levels and altered hippocampal synaptic plasticity, effects which were not seen in WT mice. Accordingly, these findings suggest that NPY contributes to the anxiolytic effect of EE and that NPY deletion reverses the beneficial effects of EE into a negative experience. The NPY system could thus be a target for "enviromimetics", therapeutics which reproduce the beneficial effects of enhanced environmental stimulation.


Subject(s)
Anxiety/genetics , Behavior, Animal/physiology , Brain-Derived Neurotrophic Factor/genetics , Fever/genetics , Housing, Animal , Neuronal Plasticity/genetics , Neuropeptide Y/genetics , Spatial Memory/physiology , Animals , Fever/pathology , Male , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuropeptide Y/metabolism , RNA, Messenger/biosynthesis , Receptors, Glucocorticoid/metabolism
6.
Brain Behav Immun ; 56: 140-55, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26923630

ABSTRACT

Emerging evidence indicates that disruption of the gut microbial community (dysbiosis) impairs mental health. Germ-free mice and antibiotic-induced gut dysbiosis are two approaches to establish causality in gut microbiota-brain relationships. However, both models have limitations, as germ-free mice display alterations in blood-brain barrier and brain ultrastructure and antibiotics may act directly on the brain. We hypothesized that the concerns related to antibiotic-induced gut dysbiosis can only adequately be addressed if the effect of intragastric treatment of adult mice with multiple antibiotics on (i) gut microbial community, (ii) metabolite profile in the colon, (iii) circulating metabolites, (iv) expression of neuronal signaling molecules in distinct brain areas and (v) cognitive behavior is systematically investigated. Of the antibiotics used (ampicillin, bacitracin, meropenem, neomycin, vancomycin), ampicillin had some oral bioavailability but did not enter the brain. 16S rDNA sequencing confirmed antibiotic-induced microbial community disruption, and metabolomics revealed that gut dysbiosis was associated with depletion of bacteria-derived metabolites in the colon and alterations of lipid species and converted microbe-derived molecules in the plasma. Importantly, novel object recognition, but not spatial, memory was impaired in antibiotic-treated mice. This cognitive deficit was associated with brain region-specific changes in the expression of cognition-relevant signaling molecules, notably brain-derived neurotrophic factor, N-methyl-d-aspartate receptor subunit 2B, serotonin transporter and neuropeptide Y system. We conclude that circulating metabolites and the cerebral neuropeptide Y system play an important role in the cognitive impairment and dysregulation of cerebral signaling molecules due to antibiotic-induced gut dysbiosis.


Subject(s)
Anti-Bacterial Agents/adverse effects , Brain/metabolism , Cognitive Dysfunction , Colon/metabolism , Dysbiosis , Gastrointestinal Microbiome/drug effects , Recognition, Psychology , Spatial Memory , Animals , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Disease Models, Animal , Dysbiosis/chemically induced , Dysbiosis/complications , Dysbiosis/metabolism , Male , Metabolomics , Mice , Mice, Inbred C57BL
7.
Front Behav Neurosci ; 9: 177, 2015.
Article in English | MEDLINE | ID: mdl-26217204

ABSTRACT

Gastrointestinal disorders with abdominal pain are associated with central sensitization and psychopathologies that are often exacerbated by stress. Here we investigated the impact of colitis induced by dextran sulfate sodium (DSS) and repeated water avoidance stress (WAS) on spontaneous and nociception-related behavior and molecular signaling in the mouse brain. DSS increased the mechanical pain sensitivity of the abdominal skin while both WAS and DSS enhanced the mechanical and thermal pain sensitivity of the plantar skin. These manifestations of central sensitization were associated with augmented c-Fos expression in spinal cord, thalamus, hypothalamus, amygdala and prefrontal cortex. While WAS stimulated phosphorylation of mitogen-activated protein kinase (MAPK) p42/44, DSS activated another signaling pathway, both of which converged on c-Fos. The DSS- and WAS-induced hyperalgesia in the abdominal and plantar skin and c-Fos expression in the brain disappeared when the mice were subjected to WAS+DSS treatment. Intrarectal allyl isothiocyanate (AITC) evoked aversive behavior (freezing, reduction of locomotion and exploration) in association with p42/44 MAPK and c-Fos activation in spinal cord and brain. These effects were inhibited by morphine, which attests to their relationship with nociception. DSS and WAS exerted opposite effects on AITC-evoked p42/44 MAPK and c-Fos activation, which indicates that these transduction pathways subserve different aspects of visceral pain processing in the brain. In summary, behavioral perturbations caused by colitis and psychological stress are associated with distinct alterations in cerebral signaling. These findings provide novel perspectives on central sensitization and the sensory and emotional processing of visceral pain stimuli in the brain.

8.
Sci Rep ; 5: 9499, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25962524

ABSTRACT

Opioids rank among the most potent analgesic drugs but gastrointestinal side effects, especially constipation, limit their therapeutic utility. The adverse effects of opioids have been attributed to stimulation of opioid receptors, but emerging evidence suggests that opioids interact with the innate immune receptor Toll-like receptor 4 (TLR4) and its signalling pathway. As TLR4 signalling affects gastrointestinal motility, we examined the involvement of TLR4 in morphine-induced depression of peristaltic motility in the guinea-pig intestine in vitro and male C57BL/6N mice in vivo. While the TLR4 antagonist TAK-242 (0.1 µM and 1 µM) did not alter the morphine-induced inhibition of peristalsis in the isolated guinea-pig small intestine, the morphine-induced decrease in pellet propulsion velocity in colonic segments was attenuated by TAK-242 (0.1 µM). The ability of TAK-242 (4 mg/kg) to mitigate the morphine-induced suppression of colonic motility was replicated in mice in vivo by measuring the expulsion time of beads inserted in the distal colon. The inhibition of upper gastrointestinal transit of mice by morphine was not affected by pre-treatment with TAK-242 (4 mg/kg) in vivo. This is the first report that morphine-induced inhibition of colonic peristalsis is alleviated by TLR4 antagonism. We therefore conclude that TLR4 may contribute to opioid-induced constipation.


Subject(s)
Colon/metabolism , Gastrointestinal Motility/drug effects , Morphine/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 4/antagonists & inhibitors , Animals , Guinea Pigs , Male , Mice , Toll-Like Receptor 4/metabolism
9.
Brain Behav Immun ; 44: 106-20, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25218901

ABSTRACT

Toll-like receptors (TLRs) and nuclear-binding domain (NOD)-like receptors (NLRs) are sensors of bacterial cell wall components to trigger an immune response. The TLR4 agonist lipopolysaccharide (LPS) is a strong immune activator leading to sickness and depressed mood. NOD agonists are less active but can prime immune cells to augment LPS-induced cytokine production. Since the impact of NOD and TLR co-activation in vivo has been little studied, the effects of the NOD1 agonist FK565 and the NOD2 agonist muramyl dipeptide (MDP), alone and in combination with LPS, on immune activation, brain function and sickness behavior were investigated in male C57BL/6N mice. Intraperitoneal injection of FK565 (0.001 or 0.003mg/kg) or MDP (1 or 3mg/kg) 4h before LPS (0.1 or 0.83mg/kg) significantly aggravated and prolonged the LPS-evoked sickness behavior as deduced from a decrease in locomotion, exploration, food intake and temperature. When given alone, FK565 and MDP had only minor effects. The exacerbation of sickness behavior induced by FK565 or MDP in combination with LPS was paralleled by enhanced plasma protein and cerebral mRNA levels of proinflammatory cytokines (IFN-γ, IL-1ß, IL-6, TNF-α) as well as enhanced plasma levels of kynurenine. Immunohistochemical visualization of c-Fos in the brain revealed that NOD2 synergism with TLR4 resulted in increased activation of cerebral nuclei relevant to sickness. These data show that NOD1 or NOD2 synergizes with TLR4 in exacerbating the immune, sickness and brain responses to peripheral immune stimulation. Our findings demonstrate that the known interactions of NLRs and TLRs at the immune cell level extend to interactions affecting brain function and behavior.


Subject(s)
Brain/immunology , Illness Behavior/physiology , Nod1 Signaling Adaptor Protein/physiology , Nod2 Signaling Adaptor Protein/physiology , Toll-Like Receptor 4/physiology , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Adjuvants, Immunologic/pharmacology , Animals , Brain/drug effects , Brain/metabolism , Corticosterone/blood , Cytokines/blood , Cytokines/metabolism , Eating/drug effects , Illness Behavior/drug effects , Kynurenine/blood , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Nod1 Signaling Adaptor Protein/agonists , Nod2 Signaling Adaptor Protein/agonists , Oligopeptides/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , RNA, Messenger/metabolism , Toll-Like Receptor 4/agonists , Tryptophan/blood
10.
Front Behav Neurosci ; 8: 386, 2014.
Article in English | MEDLINE | ID: mdl-25414650

ABSTRACT

Inflammatory bowel disease is associated with an increased risk of mental disorders and can be exacerbated by stress. In this study which was performed with male 10-week old C57Bl/6N mice, we used dextran sulfate sodium (DSS)-induced colitis to evaluate behavioral changes caused by intestinal inflammation, to assess the interaction between repeated psychological stress (water avoidance stress, WAS) and colitis in modifying behavior, and to analyze neurochemical correlates of this interaction. A 7-day treatment with DSS (2% in drinking water) decreased locomotion and enhanced anxiety-like behavior in the open field test and reduced social interaction. Repeated exposure to WAS for 7 days had little influence on behavior but prevented the DSS-induced behavioral disturbances in the open field and SI tests. In contrast, repeated WAS did not modify colon length, colonic myeloperoxidase content and circulating proinflammatory cytokines, parameters used to assess colitis severity. DSS-induced colitis was associated with an increase in circulating neuropeptide Y (NPY), a rise in the hypothalamic expression of cyclooxygenase-2 mRNA and a decrease in the hippocampal expression of NPY mRNA, brain-derived neurotrophic factor mRNA and mineralocorticoid receptor mRNA. Repeated WAS significantly decreased the relative expression of corticotropin-releasing factor mRNA in the hippocampus. The effect of repeated WAS to blunt the DSS-evoked behavioral disturbances was associated with a rise of circulating corticosterone and an increase in the expression of hypothalamic NPY mRNA. These results show that experimental colitis leads to a particular range of behavioral alterations which can be prevented by repeated WAS, a model of predictable chronic stress, while the severity of colitis remains unabated. We conclude that the mechanisms underlying the resilience effect of repeated WAS involves hypothalamic NPY and the hypothalamic-pituitary-adrenal axis.

SELECTION OF CITATIONS
SEARCH DETAIL
...