Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 845(1): 68-76, 1999 Oct 16.
Article in English | MEDLINE | ID: mdl-10529445

ABSTRACT

As one of the primary targets of the striatum, the substantia nigra pars reticulata (SNr) has been hypothesized to play a role in normal motor behavior. Specifically, inhibition of usually high, tonic SNr output is predicted to correlate with motor activation. While support for this has come primarily from electrophysiological studies in primates performing goal-directed movements, we tested this hypothesis in rats behaving in an open-field arena. SNr single-unit activity was recorded during spontaneous bouts of open-field behavior (e.g., head and body movements, locomotion) and after rats were given D-amphetamine (1.0 mg/kg, s.c.), which reliably increases motor activity and elevates the firing of motor-related striatal neurons. Prior to drug administration, SNr neurons had either regular, slightly irregular or irregular firing patterns when animals rested quietly. During movement, some inhibitions were observed, but the majority ( approximately 79%) of analyzed units increased firing by as much as 38%. Regardless of the predrug behavioral response of the cell, amphetamine strongly inhibited firing rate ( approximately 90% below nonmovement baseline) and changed firing pattern such that all cells fired irregularly. Subsequent injection with the dopamine antagonist haloperidol (1.0 mg/kg, s.c.) reversed amphetamine-induced inhibitions in all tested cells, which supports a role for dopamine in this effect. These results suggest that the pattern of striatal activity established by amphetamine, which may be critical for determining the drug-induced behavioral pattern, is represented in the SNr regardless of the predrug behavioral response of the cell.


Subject(s)
Behavior, Animal/physiology , Motor Activity/physiology , Neurons/physiology , Substantia Nigra/physiology , Action Potentials/physiology , Animals , Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Dextroamphetamine/pharmacology , Electrophysiology , Male , Motor Activity/drug effects , Neurons/drug effects , Rats , Rats, Sprague-Dawley , Rest/physiology , Substantia Nigra/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...