Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res Commun ; 4(3): 919-937, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38546390

ABSTRACT

Lung cancer is the leading cause of cancer deaths. Lethal pulmonary adenocarcinomas (ADC) present with frequent mutations in the EGFR. Genetically engineered murine models of lung cancer expedited comprehension of the molecular mechanisms driving tumorigenesis and drug response. Here, we systematically analyzed the evolution of tumor heterogeneity in the context of dynamic interactions occurring with the intermingled tumor microenvironment (TME) by high-resolution transcriptomics. Our effort identified vulnerable tumor-specific epithelial cells, as well as their cross-talk with niche components (endothelial cells, fibroblasts, and tumor-infiltrating immune cells), whose symbiotic interface shapes tumor aggressiveness and is almost completely abolished by treatment with Unesbulin, a tubulin binding agent that reduces B cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) activity. Simultaneous magnetic resonance imaging (MRI) analysis demonstrated decreased tumor growth, setting the stage for future investigations into the potential of novel therapeutic strategies for EGFR-mutant ADCs. SIGNIFICANCE: Targeting the TME is an attractive strategy for treatment of solid tumors. Here we revealed how EGFR-mutant landscapes are affected at the single-cell resolution level during Unesbulin treatment. This novel drug, by targeting cancer cells and their interactions with crucial TME components, could be envisioned for future therapeutic advancements.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Endothelial Cells , Tumor Microenvironment/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Cell Communication , ErbB Receptors/genetics
2.
Biomedicines ; 11(5)2023 05 18.
Article in English | MEDLINE | ID: mdl-37239141

ABSTRACT

microRNA-22 (miR-22) is an oncogenic miRNA whose up-regulation promotes epithelial-mesenchymal transition (EMT), tumor invasion, and metastasis in hormone-responsive breast cancer. Here we show that miR-22 plays a key role in triple negative breast cancer (TNBC) by promoting EMT and aggressiveness in 2D and 3D cell models and a mouse xenograft model of human TNBC, respectively. Furthermore, we report that miR-22 inhibition using an LNA-modified antimiR-22 compound is effective in reducing EMT both in vitro and in vivo. Importantly, pharmacologic inhibition of miR-22 suppressed metastatic spread and markedly prolonged survival in mouse xenograft models of metastatic TNBC highlighting the potential of miR-22 silencing as a new therapeutic strategy for the treatment of TNBC.

3.
Commun Biol ; 4(1): 370, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33854168

ABSTRACT

Lung cancer is the leading cause of cancer deaths. Tumor heterogeneity, which hampers development of targeted therapies, was herein deconvoluted via single cell RNA sequencing in aggressive human adenocarcinomas (carrying Kras-mutations) and comparable murine model. We identified a tumor-specific, mutant-KRAS-associated subpopulation which is conserved in both human and murine lung cancer. We previously reported a key role for the oncogene BMI-1 in adenocarcinomas. We therefore investigated the effects of in vivo PTC596 treatment, which affects BMI-1 activity, in our murine model. Post-treatment, MRI analysis showed decreased tumor size, while single cell transcriptomics concomitantly detected near complete ablation of the mutant-KRAS-associated subpopulation, signifying the presence of a pharmacologically targetable, tumor-associated subpopulation. Our findings therefore hold promise for the development of a targeted therapy for KRAS-mutant adenocarcinomas.


Subject(s)
Benzimidazoles/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Epithelial Cells/drug effects , Lung Neoplasms/drug therapy , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Pyrazines/pharmacology , A549 Cells , Animals , Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Molecular Targeted Therapy , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA-Seq , Single-Cell Analysis , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...