Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(46): 43075-43080, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31668064

ABSTRACT

In this study, substochiometric hole-selective molybdenum oxide (MoOx) contacts in crystalline silicon (c-Si) solar cells were investigated by a combination of transmission electron microscopy (TEM) and spatially resolved electron energy-loss spectroscopy (SR-EELS). It was observed that a ≈ 4 nm SiOx interlayer grows at the MoOx/c-Si interface during the evaporation of MoOx over a c-Si substrate. SR-EELS analyses revealed the presence of a 1.5 nm diffused MoOx/indium tin oxide (ITO) interface in both as-deposited and annealed samples. Moreover, the presence of a 1 nm thin layer with a lower oxidation state of Mo was detected at the SiOx/MoOx interface in an as-deposited state, which disappears upon annealing. Overall, it was evident that no hole-blocking interlayer is formed at the MoOx/ITO interface during annealing and homogenization of the MoOx layer takes place during the annealing process. Furthermore, device simulations revealed that efficient hole collection is dependent on MoOx work function and that reduction in the work function of MoOx results in loss of band bending and negatively impacts hole selectivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...