Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Type of study
Publication year range
1.
Plant Physiol ; 68(6): 1479-84, 1981 Dec.
Article in English | MEDLINE | ID: mdl-16662130

ABSTRACT

Visible absorption spectra are presented for the Azolla caroliniana Willd.-Anabaena azollae Strass. association and the individual partners. Although absorption by the phycobiliproteins of the endophytic cyanobacterium clearly complements the absorption by the fern pigments, their contribution to the absorption spectrum of the association is effectively concealed by the preponderance of the Azolla pigments. Action spectra for nitrogenase-catalyzed C(2)H(2) reduction in both the Azolla-Anabaena association and the endophytic Anabaena demonstrate that quanta absorbed by the phycobiliproteins is as effective as that absorbed by chlorophyll a in driving this photosystem I-linked process. Under anaerobic conditions, the inhibition of photosystem II activity by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron did not selectively decrease the relative quantum yields in the region of phycobiliprotein absorption. At the well-below saturating light intensities used for the action spectra studies, the absolute rates of C(2)H(2) reduction were increased uniformly via respiratory-linked processes under aerobic conditions. The occurrence of phycobiliproteins in heterocysts of the endophytic Anabaena was demonstrated using fluorescence microscopy of intact filaments. Fluorescence micrographs of Anabaena cylindrica filaments are presented for comparison.

2.
Plant Physiol ; 67(1): 12-6, 1981 Jan.
Article in English | MEDLINE | ID: mdl-16661609

ABSTRACT

A new procedure is reported for high-yield isolation of guard cell protoplasts from Vicia faba L. Delayed light emission and P(700) content plus absorption and fluorescence emission spectra of these protoplast extracts are reported. It is concluded that both photosystems are present. The presence of photosystem II and the absence of the reductive-step enzyme of the Calvin-Benson Cycle (Outlaw WH Jr, J Manchester, CH DiCamelli, DD Randall, B Rapp, GM Veith 1979 Proc Natl Acad Sci USA 76: 6371-6375) in a cell has no precedent in the literature. It is speculated that noncyclic photosynthetic electron flow is an environmental sensor which causes stomata to remain open in light.

3.
Plant Physiol ; 64(5): 791-5, 1979 Nov.
Article in English | MEDLINE | ID: mdl-16661055

ABSTRACT

Photosynthesis in the Azolla-Anabaena association was characterized with respect to photorespiration, early products of photosynthesis, and action spectra. Photorespiration as evidenced by an O(2) inhibition of photosynthesis and an O(2)-dependent CO(2) compensation concentration was found to occur in the association, and endophyte-free fronds, but not in the endophytic Anabaena. Analysis of the early products of photosynthesis indicated that both the fern and cyanobacterium fix CO(2) via the Calvin cycle. The isolated endophytic Anabaena did not release significant amounts of amino acids synthesized from recently fixed carbon. The action spectra for photosynthesis in the Azolla-Anabaena association indicated that the maximum quantum yield is between 650 and 670 nanometers, while in the endophyte the maximum is between 580 and 640 nanometers. Although the endophytic cyanobacterium is photosynthetically competent, any contribution it makes to photosynthesis in the intact association was not apparent in the action spectrum.

5.
Plant Physiol ; 62(3): 463-7, 1978 Sep.
Article in English | MEDLINE | ID: mdl-16660538

ABSTRACT

The N(2)-fixing Azolla-Anabaena symbiotic association is characterized in regard to individual host and symbiont contributions to its total chlorophyll, protein, and levels of ammonia-assimilating enzymes. The phycocyanin content of the association and the isolated blue-green algal symbiont was used as a standard for this characterization. Phycocyanin was measured by absorption and fluorescence emission spectroscopy. The phycocyanin content and total phycobilin complement of the symbiotic algae were distinct from those of Anabaena cylindrica and a free-living isolate of the Azolla endophyte. The algal symbiont accounted for less than 20% of the association's chlorophyll and protein. Acetylene reduction rates in the association (based solely on the amount of algal chlorophyll) were 30 to 50% higher than those attained when the symbiont was isolated directly from the fern. More than 75% of the association's glutamate dehydrogenase and glutamine synthetase activities are contributed by the host plant. The specific activity of glutamate dehydrogenase is greater than that of glutamine synthetase in the association and individual partners. Both the host and symbiont have glutamate synthase activity. The net distribution of these enzymes is discussed in regard to the probable roles of the host and symbiont in the assimilation of ammonia resulting from N(2) fixation by the symbiont.

7.
Plant Physiol ; 53(6): 813-9, 1974 Jun.
Article in English | MEDLINE | ID: mdl-16658796

ABSTRACT

Cultures of Azolla caroliniana Willd. free of the symbiotic blue-green alga, Anabaena azollae, were obtained by treatment of Azolla fronds with a regimen of antibiotics. These symbiontfree plants can be maintained only on medium containing a combined nitrogen source.Morphological aspects of the symbiotic association show the confinement of the Anabaena azollae within the leaf cavity of the Azolla. Procedures were established for the isolation of pure preparations of Anabaena azollae and Azolla chloroplasts. It has not yet been possible to grow the isolated alga in independent culture.Photochemical activities of the isolated alga and fern chloroplasts were measured by spectrophotometric assays for photosystems I and II as well as by P700-content (photosystem I) and delayed light emission (photosystem II). In the algal fraction, both photosystems were repressed when compared to freeliving Anabaena cylindrica, but the relative ratio of photosystem I to photosystem II may be appreciably greater in Anabaena azollae. Azolla chloroplasts were generally comparable to spinach chloroplasts.A comparison of the chlorophyll a and b content of Azolla fronds with and without the symbiotic alga resulted in an estimate that in the symbiotic association, the Anabaena azollae accounts for from 7.5 to 15% of the total chlorophyll.

8.
Plant Physiol ; 53(6): 820-4, 1974 Jun.
Article in English | MEDLINE | ID: mdl-16658797

ABSTRACT

Anaerobic (microaerophilic) acetylene reduction by Azolla caroliniana Willd. was dependent on light and saturated at approximately 450 foot candles. Maximum rates of acetylene reduction were 60 nmoles/mg chlorophyll minute. However, rates of 25 to 30 nmoles/mg chlorophyll minute were more common.The growth of Azolla for 35 days with nitrate or urea as a nitrogen source decreased the rate of acetylene reduction approximately 30% compared to controls grown on nitrogen. Prolonged growth on nitrate or urea (6-7 months) resulted in a 90% decrease in the rate of acetylene reduction.The inhibition of acetylene reduction by 3 (3,4-dichlorophenol) 1,1-dimethylurea (12 muM) was not pronounced until the Azolla became depleted of the reserves formed during photosynthesis. The interval required for this depletion was dependent upon pretreatment and varied from 2 to more than 12 hours. Oxygen evolution was inhibited 75% in 10 minutes by the same concentration of 3 (3,4-dichlorophenol) 1,1-dimethylurea.The addition of oxygen, 20% volume per volume, resulted in a 30 to 40% decrease in the rate of acetylene reduction and the onsetof 3(3,4-dichlorophenol) 1,1-dimethylurea inhibition was more rapid then under microaerophilic conditions. The aerobic dark reduction of acetylene was from 10 to 30% of the rate of aerobic reduction in the light.Acetylene reduction activity was absent in fronds freed ofthe symbiotic algae and present in isolated Anabaena azollae. This study shows that the alga is the agent of acetylene reduction and suggests that there is considerable transport of metabolites between the fern and the blue-green alga.

10.
Plant Physiol ; 47(5): 600-5, 1971 May.
Article in English | MEDLINE | ID: mdl-16657669

ABSTRACT

Isolated mesophyll cells and bundle sheath cells of Digitaria sanguinalis were used to study the light-absorbing pigments and electron transport reactions of a plant which possesses the C(4)-dicarboxylic acid cycle of photosynthesis. Absorption spectra and chlorophyll determinations are presented showing that mesophyll cells have a chlorophyll a-b ratio of about 3.0 and bundle sheath cells have a chlorophyll a-b ratio of about 4.5. The absorption spectrum of bundle sheath cells has a greater absorption in the 700 nm region at liquid nitrogen temperature, and there is a relatively greater amount of a pigment absorbing at 670 nm in the bundle sheath cells compared to the mesophyll cells. Fluorescence emission spectra, at liquid nitrogen temperature, of mesophyll cells have a fluorescence 730 nm-685 nm ratio of about 0.82 and bundle sheath cells have a ratio of about 2.84. The reversible light-induced absorption change in the region of P(700) absorption is similar in both cell types but bundle sheath cells exhibit about twice as much total P(700) change as mesophyll cells on a total chlorophyll basis. The delayed light emission of bundle sheath cells is about one-half that of mesophyll cells. Both mesophyll cells and bundle sheath cells evolve oxygen in the presence of Hill oxidants with the mesophyll cells exhibiting about twice the activity of bundle sheath cells, and both activities are inhibited by 1 muM 3-(3,4-dichlorophenyl)-1, 1-dimethylurea. Ferredoxin nicotinamide adenine dinucleotide phosphate reductase is present in both cells although it is about 3- or 4-fold higher in mesophyll cells than in bundle sheath cells. Glyceraldehyde 3-P dehydrogenases, both nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate, are equally distributed in the two cell types on a chlorophyll basis. Malic enzyme is localized in the bundle sheath cells.We interpret the data as evidence for the presence of a complete chloroplast electron transport system from oxygen evolution to pyridine nucleotide reduction in both mesophyll and bundle sheath cells. However, there is a quantitative difference in the distribution of photosystem I and photosystem II components in the two photosynthetic cells with about a 3-fold higher photosystem I-II ratio in the bundle sheath cells than in the mesophyll cells. A scheme is proposed to accommodate photosynthetic CO(2) fixation and electron transport activities in the mesophyll cells via a beta-carboxylation and in the bundle sheath cells via carboxylation of ribulose-1, 5-diphosphate.

12.
Plant Physiol ; 45(6): 738-41, 1970 Jun.
Article in English | MEDLINE | ID: mdl-16657384

ABSTRACT

Representative plants containing either the reductive pentose phosphate cycle or the C(4) dicarboxylic acid cycle of photosynthetic carbon dioxide fixation have distinctly different contents of P(700) and chlorophylls a and b. With leaf extracts and isolated chloroplasts from C(4) cycle plants, the mean value of the relative ratio of P(700) to total chlorophyll was 1.83 and the mean value of the ratio of chlorophyll a to b was 3.89. The respective values in similar extracts and chloroplasts from pentose cycle plants are 1.2 and 2.78.It seems likely that these results are indicative of a more active Photosystem I or a different size photosynthetic unit in C(4) cycle plants than in the reductve pentose phosphate cycle plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...