Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Med Imaging (Bellingham) ; 9(3): 031502, 2022 May.
Article in English | MEDLINE | ID: mdl-35155717

ABSTRACT

Purpose: We investigate how an intrinsic speckle tracking approach to speckle-based x-ray imaging is used to extract an object's effective dark-field (DF) signal, which is capable of providing object information in three dimensions. Approach: The effective DF signal was extracted using a Fokker-Planck type formalism, which models the deformations of illuminating reference beam speckles due to both coherent and diffusive scatter from the sample. Here, we assumed that (a) small-angle scattering fans at the exit surface of the sample are rotationally symmetric and (b) the object has both attenuating and refractive properties. The associated inverse problem of extracting the effective DF signal was numerically stabilized using a "weighted determinants" approach. Results: Effective DF projection images, as well as the DF tomographic reconstructions of the wood sample, are presented. DF tomography was performed using a filtered back projection reconstruction algorithm. The DF tomographic reconstructions of the wood sample provided complementary, and otherwise inaccessible, information to augment the phase contrast reconstructions, which were also computed. Conclusions: An intrinsic speckle tracking approach to speckle-based imaging can tomographically reconstruct an object's DF signal at a low sample exposure and with a simple experimental setup. The obtained DF reconstructions have an image quality comparable to alternative x-ray DF techniques.

2.
J Med Imaging (Bellingham) ; 8(5): 052108, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34268442

ABSTRACT

Purpose: Breast cancer is the most common cancer in women in developing and developed countries and is responsible for 15% of women's cancer deaths worldwide. Conventional absorption-based breast imaging techniques lack sufficient contrast for comprehensive diagnosis. Propagation-based phase-contrast computed tomography (PB-CT) is a developing technique that exploits a more contrast-sensitive property of x-rays: x-ray refraction. X-ray absorption, refraction, and contrast-to-noise in the corresponding images depend on the x-ray energy used, for the same/fixed radiation dose. The aim of this paper is to explore the relationship between x-ray energy and radiological image quality in PB-CT imaging. Approach: Thirty-nine mastectomy samples were scanned at the imaging and medical beamline at the Australian Synchrotron. Samples were scanned at various x-ray energies of 26, 28, 30, 32, 34, and 60 keV using a Hamamatsu Flat Panel detector at the same object-to-detector distance of 6 m and mean glandular dose of 4 mGy. A total of 132 image sets were produced for analysis. Seven observers rated PB-CT images against absorption-based CT (AB-CT) images of the same samples on a five-point scale. A visual grading characteristics (VGC) study was used to determine the difference in image quality. Results: PB-CT images produced at 28, 30, 32, and 34 keV x-ray energies demonstrated statistically significant higher image quality than reference AB-CT images. The optimum x-ray energy, 30 keV, displayed the largest area under the curve ( AUC VGC ) of 0.754 ( p = 0.009 ). This was followed by 32 keV ( AUC VGC = 0.731 , p ≤ 0.001 ), 34 keV ( AUC VGC = 0.723 , p ≤ 0.001 ), and 28 keV ( AUC VGC = 0.654 , p = 0.015 ). Conclusions: An optimum energy range (around 30 keV) in the PB-CT technique allows for higher image quality at a dose comparable to conventional mammographic techniques. This results in improved radiological image quality compared with conventional techniques, which may ultimately lead to higher diagnostic efficacy and a reduction in breast cancer mortalities.

3.
Acad Radiol ; 28(1): e20-e26, 2021 01.
Article in English | MEDLINE | ID: mdl-32035759

ABSTRACT

RATIONALE AND OBJECTIVES: Propagation-based phase-contrast CT (PB-CT) is an advanced X-ray imaging technology that exploits both refraction and absorption of the transmitted X-ray beam. This study was aimed at optimizing the experimental conditions of PB-CT for breast cancer imaging and examined its performance relative to conventional absorption-based CT (AB-CT) in terms of image quality and radiation dose. MATERIALS AND METHODS: Surgically excised breast mastectomy specimens (n = 12) were scanned using both PB-CT and AB-CT techniques under varying imaging conditions. To evaluate the radiological image quality, visual grading characteristics (VGC) analysis was used in which 11 breast specialist radiologists compared the overall image quality of PB-CT images with respect to the corresponding AB-CT images. The area under the VGC curve was calculated to measure the differences between PB-CT and AB-CT images. RESULTS: The highest radiological quality was obtained for PB-CT images using a 32 keV energy X-ray beam and by applying the Homogeneous Transport of Intensity Equation phase retrieval with the value of its parameter γ set to one-half of the theoretically optimal value for the given materials. Using these optimized conditions, the image quality of PB-CT images obtained at 4 mGy and 2 mGy mean glandular dose was significantly higher than AB-CT images at 4 mGy (AUCVGC = 0.901, p = 0.001 and AUCVGC = 0.819, p = 0.011, respectively). CONCLUSION: PB-CT achieves a higher radiological image quality compared to AB-CT even at a considerably lower mean glandular dose. Successful translation of the PB-CT technique for breast cancer imaging can potentially result in improved breast cancer diagnosis.


Subject(s)
Breast Neoplasms , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Humans , Mastectomy , Radiation Dosage , Tomography, X-Ray Computed
4.
Eur Radiol ; 30(5): 2740-2750, 2020 May.
Article in English | MEDLINE | ID: mdl-31974689

ABSTRACT

OBJECTIVES: To evaluate and compare the image quality of propagation-based phase-contrast computed tomography (PB-CT) using synchrotron radiation and conventional cone-beam breast computed tomography (CBBCT) based on various radiological image quality criteria. METHODS: Eight excised breast tissue samples of various sizes and containing different lesion types were scanned using PB-CT at a synchrotron facility and using CBBCT at a university-affiliated breast imaging centre. PB-CT scans were performed at two different mean glandular dose (MGD) levels: standard (5.8 mGy) and low (1.5 mGy), for comparison with CBBCT scans at the standard MGD (5.8 mGy). Image quality assessment was carried out using six quality criteria and six independent medical imaging experts in a reading room with mammography workstations. The interobserver agreement between readers was evaluated using intraclass correlation coefficient (ICC), and image quality was compared between the two breast imaging modalities using the area under the visual grading characteristic curve (AUCVGC). RESULTS: Interobserver agreement between the readers showed moderate reliability for five image criteria (ICC: ranging from 0.488 to 0.633) and low reliability for one criterion (image noise) (ICC 0.307). For five image quality criteria (overall quality, perceptible contrast, lesion sharpness, normal tissue interfaces, and calcification visibility), both standard-dose PB-CT images (AUCVGC 0.958 to 1, p ≤ .05) and low dose PB-CT images (AUCVGC 0.785 to 0.834, p ≤ .05) were of significantly higher image quality than standard-dose CBBCT images. CONCLUSIONS: Synchrotron-based PB-CT can achieve a significantly higher radiological image quality at a substantially lower radiation dose compared with conventional CBBCT. KEY POINTS: • PB-CT using synchrotron radiation results in higher image quality than conventional CBBCT for breast imaging. • PB-CT using synchrotron radiation requires a lower radiation dose than conventional CBBCT for breast imaging. • PB-CT can help clinicians diagnose patients with breast cancer.


Subject(s)
Breast Diseases/diagnosis , Breast/diagnostic imaging , Cone-Beam Computed Tomography/methods , Mammography/methods , Synchrotrons , Female , Humans , Radiation Dosage , Reproducibility of Results
5.
J Synchrotron Radiat ; 25(Pt 5): 1460-1466, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30179186

ABSTRACT

The aim of this study was to highlight the advantages that propagation-based phase-contrast computed tomography (PB-CT) with synchrotron radiation can provide in breast cancer diagnostics. For the first time, a fresh and intact mastectomy sample from a 60 year old patient was scanned on the IMBL beamline at the Australian Synchrotron in PB-CT mode and reconstructed. The clinical picture was described and characterized by an experienced breast radiologist, who underlined the advantages of providing diagnosis on a PB-CT volume rather than conventional two-dimensional modalities. Subsequently, the image quality was assessed by 11 breast radiologists and medical imaging experts using a radiological scoring system. The results indicate that, with the radiation dose delivered to the sample being equal, the accuracy of a diagnosis made on PB-CT images is significantly higher than one using conventional techniques.


Subject(s)
Breast Neoplasms/diagnostic imaging , Synchrotrons , Tomography, X-Ray Computed/methods , Breast Neoplasms/surgery , Female , Humans , In Vitro Techniques , Mastectomy , Middle Aged , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted , Signal-To-Noise Ratio
6.
IEEE Trans Med Imaging ; 37(12): 2642-2650, 2018 12.
Article in English | MEDLINE | ID: mdl-29994112

ABSTRACT

Histopathological analysis is the current gold standard in breast cancer diagnosis and management, however, as imaging technology improves, the amount of potential diagnostic information that may be demonstrable radiologically should also increase. We aimed to evaluate the potential clinical usefulness of 3-D phase-contrast micro-computed tomography (micro-CT) imaging at high spatial resolutions as an adjunct to conventional histological microscopy. Ten breast tissue specimens, 2 mm in diameter, were scanned at the SYRMEP beamline of the Elettra Synchrotron using the propagation-based phase-contrast micro-tomography method. We obtained pixel size images, which were analyzed and compared with corresponding histological sections examined under light microscopy. To evaluate the effect of spatial resolution on breast cancer diagnosis, scans with four different pixel sizes were also performed. Our comparative analysis revealed that high-resolution images can enable, at a near-histological level, detailed architectural assessment of tissue that may permit increased breast cancer diagnostic sensitivity and specificity when compared with current imaging practices. The potential clinical applications of this method are also discussed.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Imaging, Three-Dimensional/methods , X-Ray Microtomography/methods , Aged, 80 and over , Algorithms , Female , Humans , Middle Aged
7.
J Synchrotron Radiat ; 23(Pt 4): 1006-14, 2016 07.
Article in English | MEDLINE | ID: mdl-27359150

ABSTRACT

Synchrotron X-ray tomography has been applied to the study of titanium parts fabricated by additive manufacturing (AM). The AM method employed here was the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V), as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. Samples were chosen to examine the effect of build direction and complexity of design on the surface morphology and final dimensions of the piece.

8.
J Synchrotron Radiat ; 23(Pt 4): 1015-23, 2016 07.
Article in English | MEDLINE | ID: mdl-27359151

ABSTRACT

Synchrotron X-ray tomography (SXRT) has been applied to the study of defects within three-dimensional printed titanium parts. These parts were made using the Arcam EBM(®) (electron beam melting) process which uses powdered titanium alloy, Ti64 (Ti alloy with approximately 6%Al and 4%V) as the feed and an electron beam for the sintering/welding. The experiment was conducted on the Imaging and Medical Beamline of the Australian Synchrotron. The samples represent a selection of complex shapes with a variety of internal morphologies. Inspection via SXRT has revealed a number of defects which may not otherwise have been seen. The location and nature of such defects combined with detailed knowledge of the process conditions can contribute to understanding the interplay between design and manufacturing strategy. This fundamental understanding may subsequently be incorporated into process modelling, prediction of properties and the development of robust methodologies for the production of defect-free parts.

9.
J Synchrotron Radiat ; 22(6): 1509-23, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26524316

ABSTRACT

Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.


Subject(s)
Breast Neoplasms/diagnostic imaging , Image Enhancement/instrumentation , Imaging, Three-Dimensional/instrumentation , Mammography/instrumentation , Synchrotrons/instrumentation , X-Ray Diffraction/instrumentation , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Female , Humans , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Tomography, Optical/instrumentation
10.
Microsc Microanal ; 21(4): 961-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26021343

ABSTRACT

Data-constrained modeling is a method that enables three-dimensional distribution of mineral phases and porosity in a sample to be modeled based on micro-computed tomography scans acquired at different X-ray energies. Here we describe an alternative method for measuring porosity, synchrotron K-edge subtraction using xenon gas as a contrast agent. Results from both methods applied to the same Darai limestone sample are compared. Reasonable agreement between the two methods and with other porosity measurements is obtained. The possibility of a combination of data-constrained modeling and K-edge subtraction methods for more accurate sample characterization is discussed.

11.
Opt Express ; 22(8): 9087-94, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24787797

ABSTRACT

It is shown that in a broad class of linear systems, including general linear shift-invariant systems, the spatial resolution and the noise satisfy a duality relationship, resembling the uncertainty principle in quantum mechanics. The product of the spatial resolution and the standard deviation of output noise in such systems represents a type of phase-space volume that is invariant with respect to linear scaling of the point-spread function, and it cannot be made smaller than a certain positive absolute lower limit. A corresponding intrinsic "quality" characteristic is introduced and then evaluated for the cases of some popular imaging systems, including computed tomography, generic image convolution and phase-contrast imaging. It is shown that in the latter case the spatial resolution and the noise can sometimes be decoupled, potentially leading to a substantial increase in the imaging quality.

12.
ACS Nano ; 7(12): 10621-35, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24187959

ABSTRACT

The usefulness of zinc oxide (ZnO) nanoparticles has led to their wide distribution in consumer products, despite only a limited understanding of how this nanomaterial behaves within biological systems. From a nanotoxicological viewpoint the interaction(s) of ZnO nanoparticles with cells of the immune system is of specific interest, as these nanostructures are readily phagocytosed. In this study, rapid scanning X-ray fluorescence microscopy was used to assay the number ZnO nanoparticles associated with ∼1000 individual THP-1 monocyte-derived human macrophages. These data showed that nanoparticle-treated cells endured a 400% elevation in total Zn levels, 13-fold greater than the increase observed when incubated in the presence of an equitoxic concentration of ZnCl2. Even after excluding the contribution of internalized nanoparticles, Zn levels in nanoparticle treated cells were raised ∼200% above basal levels. As dissolution of ZnO nanoparticles is critical to their cytotoxic response, we utilized a strategy combining ion beam milling, X-ray fluorescence and scanning electron microscopy to directly probe the distribution and composition of ZnO nanoparticles throughout the cellular interior. This study demonstrated that correlative photon and ion beam imaging techniques can provide both high-resolution and statistically powerful information on the biology of metal oxide nanoparticles at the single-cell level. Our approach promises ready application to broader studies of phenomena at the interface of nanotechnology and biology.


Subject(s)
Macrophages/drug effects , Metal Nanoparticles/chemistry , Zinc Oxide/chemistry , Cell Line , Cluster Analysis , Cobalt/chemistry , Humans , Microscopy, Electron, Scanning , Nanotechnology , Phagocytosis , Solubility , Spectrometry, X-Ray Emission
13.
J Synchrotron Radiat ; 19(Pt 5): 728-50, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22898953

ABSTRACT

The first monochromatic X-ray tomography experiments conducted at the Imaging and Medical beamline of the Australian Synchrotron are reported. The sample was a phantom comprising nylon line, Al wire and finer Cu wire twisted together. Data sets were collected at four different X-ray energies. In order to quantitatively account for the experimental values obtained for the Hounsfield (or CT) number, it was necessary to consider various issues including the point-spread function for the X-ray imaging system and harmonic contamination of the X-ray beam. The analysis and interpretation of the data includes detailed considerations of the resolution and efficiency of the CCD detector, calculations of the X-ray spectrum prior to monochromatization, allowance for the response of the double-crystal Si monochromator used (via X-ray dynamical theory), as well as a thorough assessment of the role of X-ray phase-contrast effects. Computer simulations relating to the tomography experiments also provide valuable insights into these important issues. It was found that a significant discrepancy between theory and experiment for the Cu wire could be largely resolved in terms of the effect of the point-spread function. The findings of this study are important in respect of any attempts to extract quantitative information from X-ray tomography data, across a wide range of disciplines, including materials and life sciences.


Subject(s)
Tomography, X-Ray Computed/methods , Artifacts , Synchrotrons
14.
Microsc Microanal ; 18(3): 524-30, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22640963

ABSTRACT

Conventional X-ray microcomputed tomography (micro-CT) is not usually sufficient to determine microscopic compositional distributions as it is limited to measuring the X-ray attenuation of the sample, which for a given dataset can be similar for materials of different composition. In contrast, the present work enables three-dimensional compositional analysis with a data-constrained microstructure (DCM) modeling methodology, which uses two or more CT datasets acquired with different X-ray spectra and incorporates them as model constraints. For providing input data for DCM, we have also developed a method of micro-CT data collection that enables two datasets with different X-ray spectra to be acquired in parallel. Such data are used together with the DCM methodology to predict the distributions of corrosion inhibitor and filler in a polymer matrix. The DCM-predicted compositional microstructures have a reasonable agreement with energy dispersive X-ray images taken on the sample surface.

15.
PLoS One ; 7(2): e32685, 2012.
Article in English | MEDLINE | ID: mdl-22393436

ABSTRACT

Bioinorganic chemistry is critical to cellular function. Homeostasis of manganese (Mn), for example, is essential for life. A lack of methods for direct in situ visualization of Mn and other biological metals within intact multicellular eukaryotes limits our understanding of management of these metals. We provide the first quantitative subcellular visualization of endogenous Mn concentrations (spanning two orders of magnitude) associated with individual cells of the nematode, Caenorhabditis elegans.


Subject(s)
Caenorhabditis elegans/metabolism , Manganese/chemistry , Metals/chemistry , Animals , Caenorhabditis elegans/drug effects , Cation Transport Proteins/chemistry , Computational Biology/methods , Freeze Drying , Imaging, Three-Dimensional , Intestinal Mucosa/metabolism , Oxygen/chemistry , Tomography, X-Ray Computed/methods
16.
Materials (Basel) ; 5(5): 937-965, 2012 May 24.
Article in English | MEDLINE | ID: mdl-28817018

ABSTRACT

X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

17.
Anal Bioanal Chem ; 401(3): 853-64, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21533642

ABSTRACT

X-ray fluorescence microscopy (XFM) facilitates high-sensitivity quantitative imaging of trace metals at high spatial resolution over large sample areas and can be applied to a diverse range of biological samples. Accurate determination of elemental content from recorded spectra requires proper calibration of the XFM instrument under the relevant operating conditions. Here, we describe the manufacture, characterization, and utilization of multi-element thin-film reference foils for use in calibration of XFM measurements of biological and other specimens. We have used these internal standards to assess the two-dimensional distribution of trace metals in a thin tissue section of a rat hippocampus. The data used in this study was acquired at the XFM beamline of the Australian Synchrotron using a new 384-element array detector (Maia) and at beamline 2-ID-E at the Advanced Photon Source. Post-processing of samples by different fixation techniques was investigated, with the conclusion that differences in solvent type and sample handling can significantly alter elemental content. The present study highlights the quantitative capability, high statistical power, and versatility of the XFM technique for mapping trace metals in biological samples, e.g., brain tissue samples in order to help understand neurological processes, especially when implemented in conjunction with a high-performance detector such as Maia.


Subject(s)
Brain Chemistry , Microscopy, Fluorescence , Animals , Chromium/chemistry , Iron/chemistry , Nickel/chemistry , Rats , Titanium/chemistry , Transition Elements/chemistry , X-Rays
18.
Nat Commun ; 2: 237, 2011.
Article in English | MEDLINE | ID: mdl-21407203

ABSTRACT

With controlled nanometre-sized pores and surface areas of thousands of square metres per gram, metal-organic frameworks (MOFs) may have an integral role in future catalysis, filtration and sensing applications. In general, for MOF-based device fabrication, well-organized or patterned MOF growth is required, and thus conventional synthetic routes are not suitable. Moreover, to expand their applicability, the introduction of additional functionality into MOFs is desirable. Here, we explore the use of nanostructured poly-hydrate zinc phosphate (α-hopeite) microparticles as nucleation seeds for MOFs that simultaneously address all these issues. Affording spatial control of nucleation and significantly accelerating MOF growth, these α-hopeite microparticles are found to act as nucleation agents both in solution and on solid surfaces. In addition, the introduction of functional nanoparticles (metallic, semiconducting, polymeric) into these nucleating seeds translates directly to the fabrication of functional MOFs suitable for molecular size-selective applications.


Subject(s)
Organometallic Compounds/analysis , Phosphates/analysis , Polymers/analysis , Zinc Compounds/analysis , Biosensing Techniques/methods , Catalysis , Crystallization/methods , Models, Molecular , Organometallic Compounds/chemical synthesis , Organometallic Compounds/metabolism , Phosphates/chemical synthesis , Phosphates/metabolism , Polymers/chemical synthesis , Polymers/metabolism , Quantum Dots , Semiconductors , Solutions/chemistry , Surface Properties , Zinc Compounds/chemical synthesis , Zinc Compounds/metabolism
19.
J Synchrotron Radiat ; 17(1): 75-80, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20029114

ABSTRACT

The Imaging and Medical beamline at the Australian Synchrotron achieved ;first light' in December 2008. Here, the first experiments performed on the beamline are reported, which involved both X-ray imaging and tomography studies for a range of samples. The use of a plastic-edge phantom for quantitative measurements of contrast and resolution proved to be very instructive and helped to confirm certain parameter values such as the effective horizontal source size, detector resolution and average X-ray energy for the polychromatic beam.


Subject(s)
Radiography/instrumentation , Synchrotrons/instrumentation , Australia , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Pilot Projects , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity , X-Rays
20.
Microsc Microanal ; 14(3): 260-6, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18482471

ABSTRACT

Cold gas dynamic spray (cold spray) is a rapid deposition technology in which particles deposit at velocities above the speed of sound (approximately 340 ms-1). Generally, porosity forms in cold spray deposits due to insufficient deformation of particles. In this study, the unique capability of the X-ray microscopy and microtomography is utilized to visualize the internal structure of deposited material. The results show that this characterization technique successfully reveals porosities in the cold spray commercial purity (CP) titanium structure. Furthermore, microtomography images confirmed the experimental results for porosity measurements in which helium (compared with nitrogen) as carrier gas significantly decreases porosity in cold spray CP titanium.

SELECTION OF CITATIONS
SEARCH DETAIL
...