Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Neurogastroenterol Motil ; 25(3): 208-21, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23360102

ABSTRACT

BACKGROUND: The brain and the gut communicate bidirectionally through the autonomic nervous system (ANS). The vagus nerve (VN), a major component of the ANS, plays a key role in the neuro-endocrine-immune axis to maintain homeostasia through its afferents (through the activation of the hypothalamic pituitary adrenal axis and the central ANS) and through its efferents (i.e. the cholinergic anti-inflammatory pathway; CAP). The CAP has an anti-TNF effect both through the release of acetylcholine at the distal VN acting on macrophages and through the connection of the VN with the spleen through the splenic sympathetic nerve. Vagus nerve stimulation (VNS) of vagal afferents at high frequency (20-30 Hz) is used for the treatment of drug-resistant epilepsy and depression. Low-frequency (5 Hz) VNS of vagal efferents activates the CAP for an anti-inflammatory effect that is as an anti-TNF therapy in inflammatory diseases were TNF is a key cytokine as represented by experimental sepsis, postoperative ileus, burn-induced intestinal barrier injury, colitis. However, both vagal afferents and efferents are activated by VNS. PURPOSE: The objective of this review was to explore the following: (i) the supporting evidence for the importance of VNS in epilepsy (and depression) and its mechanisms of action, (ii) the anti-inflammatory characteristics of the VN, (iii) the experimental evidence that VNS impact on inflammatory disorders focusing on the digestive tract, and (iv) how VNS could potentially be harnessed therapeutically in human inflammatory disorders such as inflammatory bowel diseases, irritable bowel syndrome, postoperative ileus, rheumatoid arthritis as an anti-inflammatory therapy.


Subject(s)
Epilepsy/therapy , Gastrointestinal Diseases/therapy , Inflammation/physiopathology , Inflammation/therapy , Vagus Nerve Stimulation , Vagus Nerve/physiology , Animals , Gastrointestinal Diseases/physiopathology , Humans
2.
Bone Marrow Transplant ; 41(6): 579-84, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18037936

ABSTRACT

This study was aimed at evaluating the in vitro and in vivo haematopoietic potential in macaque skeletal muscle cells. Biopsy samples showed the presence of CD34(+) (7.6%), CD90(+) (8.4%), CD117(+), CD31(+), side population (SP) cells (7-10%) and a low number of CD45(+) cells. In clonogenic and long-term culture-initiating cell assays, no haematopoietic potential could be detected in either total mononuclear cells or SP cells. Regarding in vivo studies, two animals were transplanted with unfractionated fresh muscle cells after lethal irradiation. Both animals died early after transplant without any evidence of haematopoietic reconstitution. In two other monkeys, harvested muscle cells were frozen and secondarily marked using a green fluorescent protein (GFP)-lentiviral vector. After sublethal irradiation, both animals were transplanted with GFP-expressing muscle cells followed by a bone marrow rescue. Both animals had haematopoietic reconstitution at days 22 and 25, but no GFP-expressing haematopoietic cells could be detected by flow cytometry, either in the blood or in clonogenic cells from marrow aspirates. Using PCR assays, GFP(+) cells were detected in a single marrow sample of one animal at 41 days after transplantation. These results strongly suggest that as opposed to murine muscle, the non-human primate skeletal muscle does not harbour cells with a straightforward haematopoietic potential.


Subject(s)
Hematopoiesis , Muscle, Skeletal/cytology , Muscle, Skeletal/transplantation , Animals , Antigens, Surface/metabolism , Bone Marrow Cells/cytology , Cells, Cultured , Green Fluorescent Proteins/genetics , Humans , Lentivirus/genetics , Leukocytes, Mononuclear/cytology , Macaca fascicularis , Macaca mulatta , Male , Models, Animal , Transduction, Genetic , Whole-Body Irradiation
3.
Bone Marrow Transplant ; 35(12): 1201-9, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15821761

ABSTRACT

Autologous stem cell therapy (ACT) has been proposed to prevent irradiated victims from bone marrow (BM) aplasia by grafting hematopoietic stem and progenitor cells (HSPCs) collected early after damage, provided that a functional graft of sufficient size could be produced ex vivo. To address this issue, we set up a baboon model of cell therapy in which autologous peripheral blood HSPCs collected before lethal total body irradiation were irradiated in vitro (2.5 Gy, D0 1 Gy) to mimic the cell damage, cultured in small numbers for a week in a serum-free medium in the presence of antiapoptotic cytokines and mesenchymal stem cells (MSCs) and then cografted. Our study shows that baboons cografted with expanded cells issued from 0.75 and 1 x 10(6)/kg irradiated CD34+ cells and MSCs (n=2) exhibited a stable long-term multilineage engraftment. Hematopoietic recovery became uncertain when reducing the CD34+ cell input (0.4 x 10(6)/kg CD34+ cells; n=3). However, platelet recovery was accelerated in all surviving cografted animals, when compared with baboons transplanted with unirradiated, unmanipulated CD34+ cells (0.5-1 x 10(6)/kg, n=4). Baboons grafted with MSCs alone (n=3) did not recover. In all cases, the nonhematopoietic toxicity remained huge. This baboon study suggests that ACT feasibility is limited.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Radiation Injuries/therapy , Stem Cell Transplantation/methods , Animals , Antigens, CD34 , Apoptosis/radiation effects , Cell Communication , Cell Culture Techniques , Coculture Techniques , Graft Survival , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/radiation effects , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Models, Animal , Papio , Radioactive Hazard Release , Transplantation, Autologous , Whole-Body Irradiation
4.
Can J Physiol Pharmacol ; 80(7): 700-9, 2002 Jul.
Article in French | MEDLINE | ID: mdl-12184322

ABSTRACT

Abstract: Bone marrow aplasia observed following ionizing radiation exposure (Total Body Irradiation; gamma dose range: 2-10 Gy) is a result, in particular, of the radiation-induced (RI) apoptosis in hematopoietic stem and progenitor cells (HSPC). We have previously shown in a baboon model of mobilized peripheral blood CD34+ cell irradiation in vitro that RI apoptosis in HSPC was an early event, mostly occurring within the first 24 hours, which involves the CD95 Fas pathway. Apoptosis may be significantly reduced with a combination of 4 cytokines (4F): Stem Cell Factor (SCF), FLT-3 Ligand (FL), thrombopoietin (TPO), and interleukin-3 (IL-3), each at 50 ng x mL(-1) (15% survival versus <3% untreated cells, 24 h post-irradiation at 2.5 Gy). In this study we show that addition of TNF-alpha(800 IU/ml) induces an increase in 4F efficacy in terms of cell survival 24 h after incubation (26% survival after 24 h irradiation exposure at 2.5 Gy) and amplification (k) of CD34+ cells after 6 days in a serum free culture medium (SFM) (kCD34+ = 4.3 and 6.3 respectively for 4F and successive 4F + TNF-a/ 4F treatments). In addition, the 4F combination allows culture on pre-established allogenic irradiated stromal cells in vitro at 4 Gy (kCD34+ = 4.5). Overall this study suggests (i) the potential therapeutic interest for an early administration of anti-apoptotic cytokines with or without hematopoiesis inhibitors (emergency cytokine therapy) and (ii) the feasibility in the accidentally irradiated individual, of autologous cell therapy based on ex vivo expansion in order to perform autograft of residual HSPC collected after the accident.


Subject(s)
Apoptosis/drug effects , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/radiation effects , Papio/physiology , Animals , Antigens, CD34/immunology , Cell Cycle/drug effects , Cell Cycle/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Cytokines/pharmacology , Depression, Chemical , Hematopoiesis/drug effects , Phenotype , Whole-Body Irradiation
5.
Stem Cells ; 19(5): 436-42, 2001.
Article in English | MEDLINE | ID: mdl-11553852

ABSTRACT

Ex vivo expansion is a new strategy for hematopoietic stem and progenitor cell transplantation based on cytokine-induced amplification to produce grafts of controlled maturity. If the cell cycle position of CD34(+) cells has been reported to govern their engraftment potential, the respective role of stem and progenitor cells in short- and long-term hematopoietic recovery remains debated. Studies focused on long-term engraftment potential suggest impairment when using cultured grafts, but the capacity to sustain short-term recovery is still controverted. The aim of this study was: A) to evaluate the consequences of cell cycle activation on short and long-term engraftment capacity, and B) to determine if cell cycle status of grafts could predict hematopoietic recovery. We showed in a nonhuman primate model of autologous peripheral blood stem and progenitor cell transplantation that cell cycle activation of CD34(+) cells in the presence of stem cell factor + FLT3-ligand + thrombopoietin + interleukin 3 (six days of culture) which induced G1 and S/G2/M cell amplification (G0: 6.1% +/- 2.8%; G0/G1: 64.2% +/- 7.2%; S/G2/M: 30.4% +/- 7.3% respectively of expanded CD34(+) cells on average) resulted in the acceleration of short-term granulocyte recovery. By contrast, G0/G1 and S/G2/M cell content of expanded grafts did not correlate with short- or long-term engraftment.


Subject(s)
Granulocytes/metabolism , Hematopoietic Stem Cell Transplantation , Interleukin-3/metabolism , Membrane Proteins/metabolism , Stem Cell Factor/metabolism , Stem Cells/metabolism , Thrombopoietin/metabolism , Animals , Antigens, CD34/biosynthesis , Cell Cycle , Cells, Cultured , Flow Cytometry , G1 Phase , G2 Phase , Mitosis , Papio , Phenotype , Resting Phase, Cell Cycle , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...