Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 12(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36902641

ABSTRACT

Chronic Obstructive Pulmonary Disease (COPD) is one of the leading causes of death worldwide and has a large impact on a patient's quality of life due to its wide range of symptoms and comorbidities. There are known to be different phenotypes in COPD with various extents on the burden of the disease and its prognosis. Chronic bronchitis with persistent cough and mucus production is regarded as one of the main symptoms of COPD with tremendous effects on subjectively reported symptom burden and frequency of exacerbations. Exacerbations in turn are known to have an impact on disease progression and increase health care costs. Modern bronchoscopic treatment options are currently under investigation targeting the problem of chronic bronchitis and frequent exacerbations. This review summarizes the existing literature about these modern interventional treatment options and provides perspectives on upcoming studies.

2.
Front Med (Lausanne) ; 8: 659108, 2021.
Article in English | MEDLINE | ID: mdl-34017848

ABSTRACT

Objective: Diastolic dysfunction of the left ventricle is common in patients with chronic obstructive pulmonary disease (COPD). Dynamic hyperinflation has been suggested as a key determinant of reduced diastolic function in COPD. We aimed to investigate the effects of induced dynamic hyperinflation on left ventricular diastolic function in healthy subjects to exclude other confounding mechanisms associated with COPD. Design: In this randomized controlled crossover trial (NCT03500822, https://www.clinicaltrials.gov/), we induced dynamic hyperinflation using the validated method of expiratory resistance breathing (ERB), which combines tachypnea with expiratory resistance, and compared the results to those of tachypnea alone. Healthy male subjects (n = 14) were randomly assigned to the ERB or control group with subsequent crossover. Mild, moderate, and severe hyperinflation (i.e., ERB1, ERB2, ERB3) were confirmed by intrinsic positive end-expiratory pressure (PEEPi) using an esophageal balloon catheter. The effects on diastolic function of the left ventricle were measured by transthoracic echocardiographic assessment of the heart rate-adjusted transmitral E/A-ratio and E/e'-ratio. Results: We randomly assigned seven participants to the ERB group and seven to the control group (age 26 [24-26] vs. 24 [24-34], p = 0.81). Severe hyperinflation decreased the E/A-ratio compared to the control condition (1.63 [1.49-1.77] vs. 1.85 [0.95-2.75], p = 0.039), and moderate and severe ERB significantly increased the septal E/e'-ratio. No changes in diastolic function were found during mild hyperinflation. PEEPi levels during ERB were inversely correlated with the E/A ratio (regression coefficient = -0.007, p = 0.001). Conclusions: Our data indicate dynamic hyperinflation as a determinant of left ventricular diastolic dysfunction in healthy subjects. Therapeutic reduction of hyperinflation might be a treatable trait to improve diastolic function in patients with COPD.

3.
Front Med (Lausanne) ; 8: 791410, 2021.
Article in English | MEDLINE | ID: mdl-35047532

ABSTRACT

Background and Objectives: Patients with chronic obstructive pulmonary disease (COPD) are at increased risk for cardiovascular disease. This study aimed to investigate the relationship between pulmonary hyperinflation and baroreceptor reflex sensitivity (BRS), a surrogate for cardiovascular risk. Methods: 33 patients with COPD, free from clinical cardiovascular disease, and 12 healthy controls were studied. Participants underwent pulmonary function and non-invasive hemodynamic measurements. BRS was evaluated using the sequence method during resting conditions and mental arithmetic stress testing. Results: Patients with COPD had evidence of airflow obstruction [forced expiratory volume in 1 s predicted (FEV1%) 26.5 (23.3-29.1) vs. 91.5 (82.8-100.8); P < 0.001; geometric means (GM) with 95% confidence interval (CI)] and lung hyperinflation [residual volume/total lung capacity (RV/TLC) 67.7 (64.3-71.3) vs. 41.0 (38.8-44.3); P < 0.001; GM with 95% CI] compared to controls. Spontaneous mean BRS (BRSmean) was significantly lower in COPD, both during rest [5.6 (4.2-6.9) vs. 12.0 (9.1-17.6); P = 0.003; GM with 95% CI] and stress testing [4.4 (3.7-5.3) vs. 9.6 (7.7-12.2); P < 0.001; GM with 95% CI]. Stroke volume (SV) was significantly lower in the patient group [-21.0 ml (-29.4 to -12.6); P < 0.001; difference of the means with 95% CI]. RV/TLC was found to be a predictor of BRS and SV (P < 0.05 for both), independent of resting heart rate. Conclusion: We herewith provide evidence of impaired BRS in patients with COPD. Hyperinflation may influence BRS through alteration of mechanosensitive vagal nerve activity.

4.
Exp Physiol ; 106(2): 532-543, 2021 02.
Article in English | MEDLINE | ID: mdl-33174314

ABSTRACT

NEW FINDINGS: What is the central question of this study? The study aimed to establish a novel model to study the chronic obstructive pulmonary disease (COPD)-related cardiopulmonary effects of dynamic hyperinflation in healthy subjects. What is the main finding and its importance? A model of expiratory resistance breathing (ERB) was established in which dynamic hyperinflation was induced in healthy subjects, expressed both by lung volumes and intrathoracic pressures. ERB outperformed existing methods and represents an efficacious model to study cardiopulmonary mechanics of dynamic hyperinflation without potentially confounding factors as present in COPD. ABSTRACT: Dynamic hyperinflation (DH) determines symptoms and prognosis of chronic obstructive pulmonary disease (COPD). The induction of DH is used to study cardiopulmonary mechanics in healthy subjects without COPD-related confounders like inflammation, hypoxic vasoconstriction and rarefication of pulmonary vasculature. Metronome-paced tachypnoea (MPT) has proven effective in inducing DH in healthy subjects, but does not account for airflow limitation. We aimed to establish a novel model incorporating airflow limitation by combining tachypnoea with an expiratory airway stenosis. We investigated this expiratory resistance breathing (ERB) model in 14 healthy subjects using different stenosis diameters to assess a dose-response relationship. Via cross-over design, we compared ERB to MPT in a random sequence. DH was quantified by inspiratory capacity (IC, litres) and intrinsic positive end-expiratory pressure (PEEPi, cmH2 O). ERB induced a stepwise decreasing IC (means (95% CI): tidal breathing: 3.66 (3.45-3.88), ERB 3 mm: 3.33 (1.75-4.91), 2 mm: 2.05 (0.76-3.34), 1.5 mm: 0.73 (0.12-1.58) litres) and increasing PEEPi (tidal breathing: 0.70 (0.50-0.80), ERB 3 mm: 11.1 (7.0-15.2), 2 mm: 22.3 (17.1-27.6), 1.5 mm: 33.4 (3.40-63) cmH2 O). All three MPT patterns increased PEEPi, but to a far lesser extent than ERB. No adverse events during ERB were noted. In conclusion, ERB was proven to be a safe and efficacious model for the induction of DH and might be used for the investigation of cardiopulmonary interaction in healthy subjects.


Subject(s)
Lung/physiology , Respiration , Adult , Cross-Over Studies , Healthy Volunteers , Humans , Inspiratory Capacity , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...