Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Knee Surg Sports Traumatol Arthrosc ; 23(10): 2868-75, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26328800

ABSTRACT

PURPOSE: Knee joint laxities are observed in patients after severe trauma to the joint, resulting in ligament tears. Specifically, injuries to the anterior cruciate ligament may cause a significant instability. The degree of these laxities is essential in diagnostics and may affect which treatment option is suggested. METHODS: Polydimethylsiloxane (PDMS) strain gauges are proposed as a non-invasive, highly accurate and easy-to-use measurement method to quantify anterolateral and rotational laxities of the knee joint during active and passive motion. In this work, proof-of-concept measurements and a prototype of the proposed device are displayed. The measurements were taken using a knee test rig, which has specifically been designed for this purpose. This apparatus allows the simulation of isolated knee joint instabilities with a motor-controlled model of a human knee. RESULTS: The absolute sensitivity [Formula: see text] of an exemplary sensor was determined to be 2.038 [Formula: see text]; the relative sensitivity [Formula: see text] was 1.121 [Formula: see text]. Optimal positions of sensors to capture bone-to-bone displacement as projected displacement on the skin were identified. CONCLUSION: PDMS strain gauges are capable of measuring bone-to-bone displacements on the skin. We present an experimental in vitro study using an artificial knee test rig to simulate knee joint laxities and display the feasibility of our novel measurement approach.


Subject(s)
Arthrometry, Articular/instrumentation , Joint Instability/diagnosis , Knee Joint/physiopathology , Models, Biological , Stress, Mechanical , Arthrometry, Articular/methods , Biomechanical Phenomena/physiology , Dimethylpolysiloxanes , Humans , Joint Instability/physiopathology
2.
Am J Sports Med ; 43(10): 2545-52, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26264771

ABSTRACT

BACKGROUND: Persistent rotatory instability after anterior cruciate ligament (ACL) reconstruction may be a result of unaddressed insufficiency of the anterolateral structures. Recent publications about the anatomy of the anterolateral ligament (ALL) have led to a renewed interest in lateral extra-articular procedures, and several authors have proposed ALL reconstruction to supplement intra-articular ACL reconstruction. However, only limited knowledge about the biomechanical characteristics of the ALL exists. PURPOSE/HYPOTHESIS: The purpose of this study was to analyze length changes of the ALL during passive knee motion. The study hypothesis was that the ALL lengthens with knee flexion and internal tibial rotation. STUDY DESIGN: Controlled laboratory study. METHODS: The ALL of 6 cadaveric knees was dissected. Specimens were mounted in a specifically designed test rig that allowed unconstrained passive flexion/extension movement between 0° and 90° as well as external/internal tibial rotation of 25° at various flexion angles. Highly elastic, capacitive polydimethylsiloxane strain gauges were attached to the insertion sites of the ALL. Length changes were recorded continuously at flexion angles between 0° and 90° and during internal/external tibial rotation at 0°, 15°, 30°, 45°, 60°, 75°, and 90°. All measurements were calculated as the relative length change (%) of the ALL compared with 0° of flexion and neutral rotation. RESULTS: The mean relative length of the ALL significantly increased with increasing knee flexion (P < .001), with an estimated mean length change of +0.15% per degree. Both internal and external tibial rotation were independent determinants for length change; internal rotation significantly increased the length of the ALL (P < .001), whereas external rotation significantly decreased its length (P < .001). The mean length change with internal rotation increased with knee flexion, with a significantly greater length change at 90° compared with 0° (P = .048), 15° (P = .033), and 30° (P = .015). The maximum mean length change was +33.77% ± 9.62%, which was observed at 25° of internal rotation and 90° of flexion. CONCLUSION: The ALL is a nonisometric structure that tensions with knee flexion and internal tibial rotation. Length changes with internal rotation were greater at higher flexion angles, with the greatest length change of the ALL observed at 90° of flexion. CLINICAL RELEVANCE: The ALL can be considered a stabilizer against internal tibial rotation, especially at deep flexion angles. With regard to ALL reconstruction procedures, tensioning and fixation of the graft should be performed near 90° of flexion because graft tensioning near extension may cause excessive ligament strain with increasing knee flexion.


Subject(s)
Anterior Cruciate Ligament Reconstruction/methods , Anterior Cruciate Ligament/pathology , Knee Injuries/physiopathology , Knee Joint/physiopathology , Range of Motion, Articular , Aged, 80 and over , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries , Arthroscopy , Biomechanical Phenomena , Cadaver , Female , Humans , Knee Injuries/surgery , Knee Joint/surgery , Male , Rotation
3.
J Biomech Eng ; 136(12): 124504, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25322203

ABSTRACT

A thorough understanding of ligament strains and behavior is necessary to create biomechanical models, comprehend trauma mechanisms, and surgically reconstruct those ligaments in a manner that restores a physiological performance. Measurement techniques and sensors are needed to conduct this data with high accuracy in an in vitro environment. In this work, we present a novel sensor device that is capable of continuously recording ligament strains with high resolution. The sensor principle of this biocompatible strain gauge may be used for in vitro measurements and can easily be applied to any ligament in the human body. The recently rediscovered anterolateral ligament (ALL) of the knee joint was chosen to display the capability of this novel sensor system. Three cadaver knees were tested to successfully demonstrate the concept of the sensor device and display first results regarding the elongation of the ALL during flexion/extension of the knee.


Subject(s)
Dimethylpolysiloxanes , Ligaments, Articular , Materials Testing/instrumentation , Stress, Mechanical , Aged , Aged, 80 and over , Calibration , Cost-Benefit Analysis , Female , Humans , Male , Materials Testing/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...