Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
AIDS ; 36(4): 487-499, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34581307

ABSTRACT

OBJECTIVE: Spontaneous control of HIV replication without treatment in HIV-1 controllers (HICs) was associated with the development of an efficient T-cell response. In addition, increasing data suggest that the humoral response participates in viral clearance. DESIGN: In-depth characterization of Ab response in HICs may help to define new parameters associated with this control. METHODS: We assessed the levels of total and HIV-specific IgA and IgG subtypes induction and their functional potencies - that is, neutralization, phagocytosis, antibody-dependent cellular cytotoxicity (ADCC), according to the individual's major histocompatibility complex class I (HLA)-B∗57 status, and compared it with nontreated chronic progressors. RESULTS: We found that despite an undetectable viral load, HICs displayed HIV-specific IgG levels similar to those of chronic progressors. Interestingly, our compelling multifunctional analysis demonstrates that the functional Ab profile, by itself, allowed to discriminate HLA-B∗57+ HICs from HLA-B∗57- HICs and chronic progressors. CONCLUSION: These results show that HICs display a particular HIV-specific antibody (Ab) profile that may participate in HIV control and emphasize the relevance of multifunctional Ab response analysis in future Ab-driven vaccine studies.


Subject(s)
HIV Infections , HIV-1 , HIV Antibodies , HIV Non-Progressors , HLA-B Antigens , Humans , Immunoglobulin G , Viral Load
2.
Virology ; 529: 57-64, 2019 03.
Article in English | MEDLINE | ID: mdl-30665098

ABSTRACT

The results of the RV144 vaccine clinical trial showed a correlation between high level of anti-V1V2 antibodies (Abs) and a decreased risk of acquiring HIV-1 infection. This turned the focus of HIV vaccine design to the induction of elevated levels of anti-V2 Abs to increase vaccine efficacy. In plasma samples from HIV-1 infected Cameroonian individuals, we observed broad variations in levels of anti-V2 Abs, and 6 of the 79 plasma samples tested longitudinally displayed substantial deficiency of V2 Abs. Sequence analysis of the V2 region from plasma viruses and multivariate analyses of V2 characteristics showed a significant difference in several features between V2-deficient and V2-reactive plasma Abs. These results suggest that HIV vaccine immunogens containing a shorter V2 region with fewer glycosylation sites and higher electrostatic charges can be beneficial for induction of a higher level of anti-V2 Abs and thus contribute to HIV vaccine efficacy.


Subject(s)
HIV Antibodies/blood , HIV Infections/immunology , HIV Infections/virology , HIV-1 , AIDS Vaccines/immunology , Cameroon/epidemiology , HIV Antibodies/immunology , HIV Antigens/immunology , HIV Infections/epidemiology , HIV Infections/prevention & control , Humans , Multivariate Analysis , Viral Load
3.
Front Immunol ; 8: 1590, 2017.
Article in English | MEDLINE | ID: mdl-29209323

ABSTRACT

B cells produce a plethora of anti-HIV antibodies (Abs) but only few of them exhibit neutralizing activity. This was long considered a profound limitation for the enforcement of humoral immune responses against HIV-1 infection, especially since these neutralizing Abs (nAbs) are extremely difficult to induce. However, increasing evidence shows that additional non-neutralizing Abs play a significant role in decreasing the viral load, leading to partial and sometimes even total protection. Mechanisms suspected to participate in protection are numerous. They involve the Fc domain of Abs as well as their Fab part, and consequently the induced Ab isotype will be determinant for their functions, as well as the quantity and quality of the Fc-receptors (FcRs) expressed on immune cells. Fc-mediated inhibitory functions, such as Ab-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, aggregation, and even immune activation have been proposed. However, as for nAbs, the non-neutralizing activities are limited to a subset of anti-HIV Abs. An improved in-depth characterization of the Abs displaying these functional responses is required for the development of new vaccination strategies, which aim to selectively trigger the B cells able to induce the right functional Ab combinations both at the right place and at the right time. This review summarizes our current knowledge on non-neutralizing functional inhibitory Abs and discusses the potential benefit of inducing them via vaccination. We also provide new insight into the roles of the FcγR-mediated Ab therapeutics in clinical trials for HIV diseases.

4.
Sci Rep ; 7(1): 12655, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28978939

ABSTRACT

The development of an effective vaccine against HIV-1 has proven to be challenging. Broadly neutralizing antibodies (bNAbs), whilst exhibiting neutralization breadth and potency, are elicited only in a small subset of infected individuals and have yet to be induced by vaccination. Case-control studies of RV144 identified an inverse correlation of HIV-1 infection risk with antibodies (Abs) to the V1V2 region of gp120 with high antibody-dependent cellular cytotoxicity (ADCC) activity. The neutralizing activity of Abs was not found to contribute to this protective outcome. Using primary effector and target cells and primary virus isolates, we studied the ADCC profile of different monoclonal Abs targeting the V1V2 loop of gp120 that had low or no neutralizing activity. We compared their ADCC activity to some bNAbs targeting different regions of gp120. We found that mAbs targeting the V1V2 domain induce up to 60% NK cell mediated lysis of HIV-1 infected PBMCs in a physiologically relevant ADCC model, highlighting the interest in inducing such Abs in future HIV vaccine trials. Our data also suggest that in addition to neutralization, lysis of infected cells by Abs can effectively participate in HIV protection, as suggested by the RV144 immune correlate analysis.


Subject(s)
HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , HIV-1/immunology , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibody-Dependent Cell Cytotoxicity/immunology , Cross Reactions/immunology , Epitopes/immunology , HIV Envelope Protein gp120/therapeutic use , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/pathogenicity , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Protein Domains/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/virology
5.
Front Immunol ; 7: 579, 2016.
Article in English | MEDLINE | ID: mdl-28018346

ABSTRACT

Failure of immune reconstitution increases the risk of AIDS or non-AIDS related morbidity and mortality in HIV-1-infected patients. CD3+CD4-CD8- T cells, which are usually described as double-negative (DN) T cells, display CD4-like helper and immunoregulatory functions. Here, we have measured the percentage of DN T cells in the immune reconstituted vs. non-immune reconstituted HIV-1-infected individuals. We observed that immunological non-responders (INRs) had a low number of DN T cells after long-term antiretroviral therapy (ART), and the number of these cells positively correlated with the CD4+ T cell count. The ART did not result in complete suppression of immune activation recorded by the percentage of CD38+HLA-DR+CD8+ T cells in INRs, and a strong inverse correlation was observed between DN T cells and immune activation. A low proportion of TGF-ß1+DN T cells was found in INRs. Further mechanism study demonstrated that the level of TGF-ß1-producing DN T cells and immune activation had a negative correlation after ART. Taken together, our study suggests that DN T cells control the immunological response in HIV-1-infected patients. These findings expand our understanding of the mechanism of immune reconstitution and could develop specific treatments to return the immune system to homeostasis following initiation of HIV-1 therapy.

6.
AIDS Res Hum Retroviruses ; 31(11): 1187-91, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26252799

ABSTRACT

Mucosal tissues are the predominant sites for genital HIV-1 transmission. We investigated the mechanisms by which broadly neutralizing antibodies (bNAbs) inhibit HIV-1 replication in a coculture model including primary mucosal dendritic cells (DCs), such as Langerhans cells, interstitial dendritic cells, and CD4(+) T lymphocytes. We show that bNAbs efficiently prevent HIV-1 infection by inhibiting HIV-1 transmission to CD4(+) T lymphocytes. This inhibition of cell-to-cell transmission was observed with equal potency as the inhibition of cell-free infection of primary CD4(+) T lymphocytes. In addition, a decrease in HIV-1 replication in DCs and the induction of DC maturation were detected. This additional inhibition was Fc mediated as it was blocked by the use of specific anti-FcγR monoclonal Abs. The DC maturation by bNAbs during HIV transmission may contribute to mucosal protection. Therefore, multiple antibody-mediated inhibitory functions should be combined for the improvement of future preventive/therapeutic strategies to cure HIV.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Disease Transmission, Infectious/prevention & control , HIV Antibodies/administration & dosage , HIV Infections/prevention & control , HIV-1/immunology , Immunization, Passive/methods , Antibodies, Neutralizing/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , Dendritic Cells/immunology , Dendritic Cells/virology , HIV Antibodies/immunology , HIV Infections/virology , Humans , Models, Biological , Virus Replication/drug effects
7.
Microbiol Spectr ; 3(1): AID-0025-2014, 2015 Feb.
Article in English | MEDLINE | ID: mdl-26104552

ABSTRACT

Antibodies (Abs) are a critical component of the human immune response against viral infections. In HIV-infected patients, a robust Ab response against the virus develops within months of infection; however, due to numerous strategies, the virus usually escapes the biological effects of the various Abs. Here we provide an overview of the different viral evasion mechanisms, including glycosylation, high mutation rate, and conformational masking by the envelope glycoproteins of the virus. In response to virus infection and to its evolution within a host, "conventional Abs" are generated, and these can also be induced by immunization; generally, these Abs are limited in their neutralization breadth and potency. In contrast, "exceptional Abs" require extended exposure to virus to generate the required hypermutation in the immunoglobulin variable regions, and they occur only in rare HIV-infected individuals, but they display impressive breadth and potency. In this review, we describe the major regions of the HIV envelope spike that are targeted by conventional and exceptional Abs. These include the first, second, and third variable loops (V1, V2, and V3) located at the apex of the envelope trimer, the CD4 binding site, and the membrane-proximal external region of the gp41 ectodomain. Lastly, we discuss the challenging task of HIV immunogen design and approaches for choosing which immunogens might be used to elicit protective Abs.


Subject(s)
HIV Antibodies/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , AIDS Vaccines/isolation & purification , Glycosylation , HIV Infections/immunology , HIV Infections/virology , Humans , Immune Evasion , Mutation , Protein Conformation
8.
J Virol ; 88(21): 12853-65, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25165106

ABSTRACT

UNLABELLED: Broadly neutralizing antibodies targeting the HIV-1 envelope (Env) are key components for protection against HIV-1. However, many cross-reactive epitopes are often occluded. This study investigates the mechanisms contributing to the masking of V2i (variable loop V2 integrin) epitopes compared to the accessibility of V3 epitopes. V2i are conformation-dependent epitopes encompassing the integrin α4ß7-binding motif on the V1V2 loop of HIV-1 Env gp120. The V2i monoclonal antibodies (MAbs) display extensive cross-reactivity with gp120 monomers from many subtypes but neutralize only few viruses, indicating V2i's cryptic nature. First, we asked whether CD4-induced Env conformational changes affect V2i epitopes similarly to V3. CD4 treatment of BaL and JRFL pseudoviruses increased their neutralization sensitivity to V3 MAbs but not to the V2i MAbs. Second, the contribution of N-glycans in masking V2i versus V3 epitopes was evaluated by testing the neutralization of pseudoviruses produced in the presence of a glycosidase inhibitor, kifunensine. Viruses grown in kifunensine were more sensitive to neutralization by V3 but not V2i MAbs. Finally, we evaluated the time-dependent dynamics of the V2i and V3 epitopes. Extending the time of virus-MAb interaction to 18 h before adding target cells increased virus neutralization by some V2i MAbs and all V3 MAbs tested. Consistent with this, V2i MAb binding to Env on the surface of transfected cells also increased in a time-dependent manner. Hence, V2i and V3 epitopes are highly dynamic, but distinct factors modulate the antibody accessibility of these epitopes. The study reveals the importance of the structural dynamics of V2i and V3 epitopes in determining HIV-1 neutralization by antibodies targeting these sites. IMPORTANCE: Conserved neutralizing epitopes are present in the V1V2 and V3 regions of HIV-1 Env, but these epitopes are often occluded from Abs. This study reveals that distinct mechanisms contribute to the masking of V3 epitopes and V2i epitopes in the V1V2 domain. Importantly, V3 MAbs and some V2i MAbs display greater neutralization against relatively resistant HIV-1 isolates when the MAbs interact with the virus for a prolonged period of time. Given their highly immunogenic nature, V3 and V2i epitopes are valuable targets that would augment the efficacy of HIV vaccines.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Epitopes/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Cell Line , HIV Antibodies/metabolism , Humans , Neutralization Tests , Protein Binding
9.
J Med Virol ; 86(3): 385-93, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24248638

ABSTRACT

The HIV epidemic in Cameroon is marked by a broad genetic diversity dominated by circulating recombinant forms (CRFs). Studies performed more than a decade ago in urban settings of Southern Cameroon revealed a dominance of the CRF02_AG and clade A variants in >90% of the infected subjects; however, little is known about the evolving viral variants circulating in this region. To document circulating HIV viral diversity, four regions of the viral genome (gag, PR, reverse transcriptase, env) in 116 HIV-1 positive individuals in Limbe, Southern Cameroon, were PCR-amplified. Sequences obtained at the RT and protease regions were analyzed for mutations that conferred drug resistance using the Stanford Drug Resistance Database. The present study reveals a broad genetic diversity characterized by several unique recombinant forms (URF) accounting for 36% of infections, 48.6% of patients infected with CRF02_AG, and the emergence of CRF22_01A1 in 7.2% of patients. Three out of 15 (20%) treated patients and 13 out of 93 (13.9%) drug naïve patients harbor drug resistance mutations to RT inhibitors, while 3.2% of drug naïve patients harbor drug resistance mutations associated with protease inhibitors. The high proportion (13.9%) of drug resistance mutations among the drug naïve patients reveals the ongoing transmission of these viruses in this region of Cameroon and highlights the need for drug resistance testing before starting treatment for patients infected with HIV-1.


Subject(s)
Drug Resistance, Viral , Evolution, Molecular , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , Mutation , Recombination, Genetic , Adolescent , Adult , Aged , Cameroon/epidemiology , Female , Genetic Variation , Genotype , HIV Infections/epidemiology , HIV-1/isolation & purification , Human Immunodeficiency Virus Proteins/genetics , Humans , Male , Middle Aged , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Viral/genetics , Sequence Analysis, DNA , Young Adult
10.
PLoS One ; 8(7): e70859, 2013.
Article in English | MEDLINE | ID: mdl-23923028

ABSTRACT

In the case-control study of the RV144 vaccine trial, the levels of antibodies to the V1V2 region of the gp120 envelope glycoprotein were found to correlate inversely with risk of HIV infection. This recent demonstration of the potential role of V1V2 as a vaccine target has catapulted this region into the focus of HIV-1 research. We previously described seven human monoclonal antibodies (mAbs) derived from HIV-infected individuals that are directed against conformational epitopes in the V1V2 domain. In this study, using lysates of SF162 pseudoviruses carrying V1V2 mutations, we mapped the epitopes of these seven mAbs. All tested mAbs demonstrated a similar binding pattern in which three mutations (F176A, Y177T, and D180L) abrogated binding of at least six of the seven mAbs to ≤15% of SF162 wildtype binding. Binding of six or all of the mAbs was reduced to ≤50% of wildtype by single substitutions at seven positions (168, 180, 181, 183, 184, 191, and 193), while one change, V181I, increased the binding of all mAbs. When mapped onto a model of V2, our results suggest that the epitope of the conformational V2 mAbs is located mostly in the disordered region of the available crystal structure of V1V2, overlapping and surrounding the α4ß7 binding site on V2.


Subject(s)
Antibodies, Monoclonal/chemistry , Epitope Mapping , Epitopes/chemistry , HIV Antibodies/chemistry , HIV-1/immunology , Immunoglobulin Variable Region/chemistry , Amino Acid Sequence , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Binding Sites , Cell Line , Epitopes/genetics , Epitopes/immunology , HIV Antibodies/genetics , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , Humans , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Models, Molecular , Molecular Sequence Data , Mutation , Protein Binding/immunology , Protein Conformation
11.
PLoS One ; 7(6): e38989, 2012.
Article in English | MEDLINE | ID: mdl-22720009

ABSTRACT

Recent studies have demonstrated that both the potency and breadth of the humoral anti-HIV-1 immune response in generating neutralizing antibodies (nAbs) against heterologous viruses are significantly enhanced after superinfection by discordant HIV-1 subtypes, suggesting that repeated exposure of the immune system to highly diverse HIV-1 antigens can significantly improve anti-HIV-1 immunity. Thus, we investigated whether sequential plasma from these subjects superinfected with discordant HIV-1 subtypes, who exhibit broad nAbs against heterologous viruses, also neutralize their discordant early autologous viruses with increasing potency. Comparing the neutralization capacities of sequential plasma obtained before and after superinfection of 4 subjects to those of matched plasma obtained from 4 singly infected control subjects, no difference in the increase in neutralization capacity was observed between the two groups (p = 0.328). Overall, a higher increase in neutralization over time was detected in the singly infected patients (mean change in IC(50) titer from first to last plasma sample: 183.4) compared to the superinfected study subjects (mean change in IC(50) titer from first to last plasma sample: 66.5). Analysis of the Breadth-Potency Scores confirmed that there was no significant difference in the increase in superinfected and singly infected study subjects (p = 0.234). These studies suggest that while superinfection by discordant subtypes induces antibodies with enhanced neutralizing breadth and potency against heterologous viruses, the potency to neutralize their autologous viruses is not better than those seen in singly infected patients.


Subject(s)
Antibodies, Neutralizing/immunology , HIV-1/immunology , CD4 Lymphocyte Count , HIV Infections/immunology , Humans , Inhibitory Concentration 50 , Phylogeny , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...