Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 110(24): 4176-4193.e10, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36240769

ABSTRACT

Behavioral states can influence performance of goal-directed sensorimotor tasks. Yet, it is unclear how altered neuronal sensory representations in these states relate to task performance and learning. We trained water-restricted mice in a two-whisker discrimination task to study cortical circuits underlying perceptual decision-making under different levels of thirst. We identified somatosensory cortices as well as the premotor cortex as part of the circuit necessary for task execution. Two-photon calcium imaging in these areas identified populations selective to sensory or motor events. Analysis of task performance during individual sessions revealed distinct behavioral states induced by decreasing levels of thirst-related motivation. Learning was better explained by improvements in motivational state control rather than sensorimotor association. Whisker sensory representations in the cortex were altered across behavioral states. In particular, whisker stimuli could be better decoded from neuronal activity during high task performance states, suggesting that state-dependent changes of sensory processing influence decision-making.


Subject(s)
Motivation , Motor Cortex , Mice , Animals , Goals , Learning/physiology , Motor Cortex/physiology , Perception , Somatosensory Cortex/physiology , Vibrissae/physiology
2.
Elife ; 82019 12 20.
Article in English | MEDLINE | ID: mdl-31860443

ABSTRACT

Mouse primary somatosensory barrel cortex (wS1) processes whisker sensory information, receiving input from two distinct thalamic nuclei. The first-order ventral posterior medial (VPM) somatosensory thalamic nucleus most densely innervates layer 4 (L4) barrels, whereas the higher-order posterior thalamic nucleus (medial part, POm) most densely innervates L1 and L5A. We optogenetically stimulated VPM or POm axons, and recorded evoked excitatory postsynaptic potentials (EPSPs) in different cell-types across cortical layers in wS1. We found that excitatory neurons and parvalbumin-expressing inhibitory neurons received the largest EPSPs, dominated by VPM input to L4 and POm input to L5A. In contrast, somatostatin-expressing inhibitory neurons received very little input from either pathway in any layer. Vasoactive intestinal peptide-expressing inhibitory neurons received an intermediate level of excitatory input with less apparent layer-specificity. Our data help understand how wS1 neocortical microcircuits might process and integrate sensory and higher-order inputs.


Subject(s)
Neural Pathways/anatomy & histology , Neural Pathways/physiology , Somatosensory Cortex/anatomy & histology , Somatosensory Cortex/physiology , Thalamus/anatomy & histology , Thalamus/physiology , Animals , Electroencephalography , Evoked Potentials , Mechanoreceptors/physiology , Mice , Optogenetics , Photic Stimulation , Vibrissae/physiology
3.
Neuron ; 103(6): 1034-1043.e5, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31402199

ABSTRACT

The neural circuits underlying goal-directed sensorimotor transformations in the mammalian brain are incompletely understood. Here, we compared the role of primary tongue-jaw motor cortex (tjM1) and primary whisker sensory cortex (wS1) in head-restrained mice trained to lick a reward spout in response to whisker deflection. Two-photon microscopy combined with microprisms allowed imaging of neuronal network activity across cortical layers in transgenic mice expressing a genetically encoded calcium indicator. Early-phase activity in wS1 encoded the whisker sensory stimulus and was necessary for detection of whisker stimuli. Activity in tjM1 encoded licking direction during task execution and was necessary for contralateral licking. Pre-stimulus activity in tjM1, but not wS1, was predictive of lick direction and contributed causally to small preparatory jaw movements. Our data reveal a shift in coding scheme from wS1 to tjM1, consistent with the hypothesis that these areas represent cortical start and end points for this goal-directed sensorimotor transformation.


Subject(s)
Motor Cortex/physiology , Nerve Net/physiology , Somatosensory Cortex/physiology , Animals , Brain Mapping , Calcium/metabolism , Jaw/innervation , Learning , Mice , Mice, Transgenic , Microscopy, Fluorescence , Motor Cortex/metabolism , Nerve Net/metabolism , Optogenetics , Reward , Somatosensory Cortex/metabolism , Tongue/innervation , Vibrissae/innervation
4.
Biomed Opt Express ; 6(11): 4228-37, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26600989

ABSTRACT

We present a cost-effective in vivo two-photon microscope with a highly flexible frontend for in vivo research. Our design ensures fast and reproducible access to the area of interest, including rotation of imaging plane, and maximizes space for auxiliary experimental equipment in the vicinity of the animal. Mechanical flexibility is achieved with large motorized linear stages that move the objective in the X, Y, and Z directions up to 130 mm. 360° rotation of the frontend (rotational freedom for one axis) is achieved with the combination of a motorized high precision bearing and gearing. Additionally, the modular design of the frontend, based on commercially available optomechanical parts, allows straightforward updates to future scanning technologies. The design exceeds the mobility of previous movable microscope designs while maintaining high optical performance.

5.
Neuroimage ; 115: 52-63, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25934471

ABSTRACT

The rodent whisker system is a preferred model for studying plasticity in the somatosensory cortex (barrel cortex). Contrarily, only a small amount of research has been conducted to characterize the stability of neuronal population activity in the barrel cortex. We used the mouse whisker system to address the neuronal basis of stable perception in the somatosensory cortex. Cortical representation of periodic whisker deflections was studied in populations of neurons in supragranular layers over extended time periods (up to 3 months) with long-term two-photon Ca(2+) imaging in anesthetized mice. We found that in most of the neurons (87%), Ca(2+) responses increased sublinearly with increasing number of contralateral whisker deflections. The imaged population of neurons was activated in a stereotypic way over days and for different deflection rates (pulse frequencies). Thus, pulse frequencies are coded by response strength rather than by distinct neuronal sub-populations. A small population of highly responsive neurons (~3%) was sufficient to decode the whisker stimulus. This conserved functional map, led by a small set of highly responsive neurons, might form the foundation of stable sensory percepts.


Subject(s)
Somatosensory Cortex/physiology , Vibrissae/innervation , Absorptiometry, Photon , Afferent Pathways , Anesthesia , Animals , Electrodes, Implanted , Female , Mice , Mice, Inbred C57BL , Neuroimaging , Neuronal Plasticity/physiology , Physical Stimulation , Sensory Receptor Cells/physiology , Touch/physiology , Touch Perception/physiology , Vibrissae/physiology
6.
Nat Neurosci ; 17(11): 1567-73, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25242306

ABSTRACT

Neocortical responses typically adapt to repeated sensory stimulation, improving sensitivity to stimulus changes, but possibly also imposing limitations on perception. For example, it is unclear whether information about stimulus frequency is perturbed by adaptation or encoded by precise response timing. We addressed this question in rat barrel cortex by comparing performance in behavioral tasks with either whisker stimulation, which causes frequency-dependent adaptation, or optical activation of cortically expressed channelrhodopsin-2, which elicits non-adapting neural responses. Circumventing adaption by optical activation substantially improved cross-hemispheric discrimination of stimulus frequency. This improvement persisted when temporal precision of optically evoked spikes was reduced. We were able to replicate whisker-driven behavior only by applying adaptation rules mimicking sensory-evoked responses to optical stimuli. Conversely, in a change-detection task, animals performed better with whisker than optical stimulation. Our results directly demonstrate that sensory adaptation critically governs the perception of stimulus patterns, decreasing fidelity under steady-state conditions in favor of change detection.


Subject(s)
Adaptation, Physiological/physiology , Behavior, Animal/physiology , Neocortex/physiology , Pattern Recognition, Physiological/physiology , Action Potentials/physiology , Animals , Female , Rats, Sprague-Dawley , Somatosensory Cortex/physiology , Touch/physiology , Vibrissae/physiology
7.
J Neurophysiol ; 109(1): 273-84, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23054598

ABSTRACT

Rats and mice receive a constant bilateral stream of tactile information with their large mystacial vibrissae when navigating in their environment. In a two-alternative forced choice paradigm (2-AFC), head-fixed rats and mice learned to discriminate vibrotactile frequencies applied simultaneously to individual whiskers on the left and right sides of the snout. Mice and rats discriminated 90-Hz pulsatile stimuli from pulsatile stimuli with lower repetition frequencies (10-80 Hz) but with identical kinematic properties in each pulse. Psychometric curves displayed an average perceptual threshold of 50.6-Hz and 53.0-Hz frequency difference corresponding to Weber fractions of 0.56 and 0.58 in mice and rats, respectively. Both species performed >400 trials a day (>200 trials per session, 2 sessions/day), with a peak performance of >90% correct responses. In general, rats and mice trained in the identical task showed comparable psychometric curves. Behavioral readouts, such as reaction times, learning rates, trial omissions, and impulsivity, were also very similar in the two species. Furthermore, whisking of the animals before stimulus presentation reduced task performance. This behavioral paradigm, combined with whisker position tracking, allows precise stimulus control in the 2-AFC task for head-fixed rodents. It is compatible with state-of-the-art neurophysiological recording techniques, such as electrophysiology and two-photon imaging, and therefore represents a valuable framework for neurophysiological investigations of perceptual decision-making.


Subject(s)
Choice Behavior/physiology , Conditioning, Operant/physiology , Discrimination, Psychological/physiology , Touch Perception/physiology , Vibrissae/physiology , Animals , Behavior, Animal/physiology , Exploratory Behavior/physiology , Mice , Rats , Somatosensory Cortex/physiology , Touch/physiology
8.
J Chem Phys ; 132(4): 044103, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20113015

ABSTRACT

We present a new class of high-order imaginary time propagators for path integral Monte Carlo simulations that require no higher order derivatives of the potential nor explicit quadratures of Gaussian trajectories. Higher orders are achieved by an extrapolation of the primitive second-order propagator involving subtractions. By requiring all terms of the extrapolated propagator to have the same Gaussian trajectory, the subtraction only affects the potential part of the path integral. The resulting violation of positivity has surprisingly little effects on the accuracy of the algorithms at practical time steps. Thus in principle, arbitrarily high order algorithms can be devised for path integral Monte Carlo simulations. We verified the fourth, sixth, and eighth order convergences of these algorithms by solving for the ground state energy and pair distribution function of liquid (4)He, which is representative of a dense, and strongly interacting, quantum many-body system.

SELECTION OF CITATIONS
SEARCH DETAIL
...