Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139961

ABSTRACT

The design of musical instruments is a discipline that is still carried out in an artisanal way, with limitations and high costs. With the additive manufacturing technique, it is possible to obtain results for the generation of not only electrical but also acoustic instruments. However, it is necessary to generate a procedure to evaluate the influence of the process on the final result of the acoustics obtained. This study focuses on investigating the relationship between the construction of acoustic guitars and their final sound. The reinforcement structures at the top of the instrument are analysed, as well as how this design affects the vibratory behaviour of the top in the first five vibratory modes. Specifically, this article presents a procedure for the design of customised acoustic guitars using additive manufacturing through parametrisation and a vibrational analysis of the designed tops using finite element (FEA) and experimental physical tests, in order to develop a methodology for the study of stringed instruments. As a result, an 11% increase in the high-frequency response was achieved with a printing direction of +45°, and a reduction in the high-frequency response with ±45°. In addition, at high frequencies, a relative error of 5% was achieved with respect to the simulation. This work fulfils an identified need to study the manufacture of acoustic guitars using polylactic acid (PLA), and to be able to offer the musician a customised instrument. This represents a breakthrough in the use of this manufacturing technology, extending its relationship with product design.

2.
Materials (Basel) ; 16(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37241470

ABSTRACT

Surface modification of metallic alloys can create hydrophilic or hydrophobic surfaces that enhance the functional performance of the material. For example, hydrophilic surfaces have improved wettability, which improves mechanical anchorage in adhesive bonding operations. This wettability is directly related to the type of texture created on the surface and the roughness obtained after the surface modification process. This paper presents the use of abrasive water jetting as an optimal technology for the surface modification of metal alloys. A correct combination of high traverse speeds at low hydraulic pressures minimises the power of the water jet and allows for the removal of small layers of material. The erosive nature of the material removal mechanism creates a high surface roughness, which increases its surface activation. In this way, the influence of texturing with and without abrasive has been evaluated, reaching combinations where the absence of abrasive particles can produce surfaces of interest. In the results obtained, the influence of the most relevant texturing parameters between hydraulic pressure, traverse speed, abrasive flow and spacing has been determined. This has allowed a relationship to be established between these variables and surface quality in terms of Sa, Sz and Sk, as well as wettability.

3.
Polymers (Basel) ; 13(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34960892

ABSTRACT

This work focuses on evaluating and establishing the relationship of the influence of geometrical and manufacturing parameters in stiffness of additively manufactured TPU lattice structures. The contribution of this work resides in the creation of a methodology that focuses on characterizing the behavior of elastic lattice structures. Likewise, resides in the possibility of using the statistical treatment of results as a guide to find favorable possibilities within the range of parameters studied and to predict the behavior of the structures. In order to characterize their behavior, different types of specimens were designed and tested by finite element simulation of a compression process using Computer Aided Engineering (CAE) tools. The tests showed that the stiffness depends on the topology of the cells of the lattice structure. For structures with different cell topologies, it has been possible to obtain an increase in the reaction force against compression from 24.7 N to 397 N for the same manufacturing conditions. It was shown that other parameters with a defined influence on the stiffness of the structure were the temperature and the unit size of the cells, all due to the development of fusion mechanisms and the variation in the volume of material used, respectively.

4.
Polymers (Basel) ; 13(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34372122

ABSTRACT

The design of products with elastic properties is a paradigm for design engineers because the properties of the material define the correct functionality of the product. Fused filament fabrication (FFF) allows for the printing of products in thermoplastic polyurethanes (TPU). Therefore, it offers the ability to design elastic products with the freedom of forms that this technology allows and also with greater variation of elastic properties than with a conventional process. The internal structures and the variation in thickness that can be used facilitate the design of products with different elastic realities, producing variations in the elasticity of the product with the same material. This work studies the influence of the variation of internal density as a function of basic geometries in order to quantify the difference in elasticity produced on a product when it is designed. Likewise, a case study was carried out with the creation of a fully elastic computer keyboard printed in 3D. The specimens were subjected to compression to characterize the behavior of the structures. The tests showed that the elasticity varies depending on the orientation and geometry, with the highest compressive strength observed in the vertical orientation with 80% lightening. In addition, the internal lightening increases the elasticity progressively but not uniformly with respect to the solid geometry, and also the flat faces favour the reduction in elasticity. This study classifies the behavior of TPU with the aim of being applied to the design and manufacture of products with specific properties. In this work, a totally flexible and functional keyboard was designed, obtaining elasticity values that validate the study carried out.

5.
Materials (Basel) ; 13(24)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321743

ABSTRACT

The search for sustainability in the Supply Chain (SC) is one of the tasks that most concerns business leaders in all manufacturing sectors because of the importance that the Supply Chain has as a transversal tool and due to the leading role that it has been playing lately. Of all the manufacturing sectors, this study focuses on the aerospace, shipbuilding, and automotive sectors identified as transport. The present study carries out a descriptive review of existing publications in these three sectors in relation to the sustainability of the Supply Chain in its 4.0 adaptation as an update in matters that are in constant evolution. Among the results obtained, Lean practices are common to the three sectors, as well as different technologies focused on sustainability. Furthermore, the results show that the automotive sector is the one that makes the greatest contribution in this sense through collaborative programs that can be very useful to the other two sectors, thus benefiting from the consequent applicable advantages. Meanwhile, the Aerospace and Shipbuilding sectors do not seem to be working on promoting a sustainable culture in the management of the Supply Chain or on including training programs for their personnel in matters related to Industry 4.0.

6.
Materials (Basel) ; 13(5)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155823

ABSTRACT

This paper presents a preliminary study of aluminium matrix composite materials during machining, with a special focus on their behavior under conventional processes. This work will expand the knowledge of these materials, which is considered to be strategic for some industrial sectors, such as the aeronautics, electronics, and automotive sectors. Finding a machining model will allow us to define the necessary parameters when applying the materials to industry. As a previous step of the material and its machining, an experimental state-of-the-art review has been carried out, revealing a lack of studies about the composition and material properties, processes, tools, and recommended parameters. The results obtained and reflected in this paper are as follows; SiC is present in metallic matrix composite (MMC) materials in a very wide variety of sizes. A metallographic study of the material confirms the high percentage of reinforcement and very high microhardness values registered. During the machining process, tools present a very high level of wear in a very short amount of time, where chips are generated and arcs are segmented, revealing the high microhardness of the material, which is given by its high concentration of SiC. The chip shape is the same among other materials with a similar microhardness, such as Ti or its alloys. The forces registered in the machining process are quite different from conventional alloys and are more similar to the values of harder alloys, which is also the case for chip generation. The results coincide, in part, with previous studies and also give new insight into the behavior of this material, which does not conform to the assumptions for standard metallic materials, where the hypothesis of Shaffer is not directly applicable. On the other hand, here, cutting forces do not behave in accordance with the traditional model. This paper will contribute to improve the knowledge of the Al-63%SiC MMC itself and the machining behavior.

7.
Materials (Basel) ; 12(3)2019 Feb 03.
Article in English | MEDLINE | ID: mdl-30717481

ABSTRACT

In the context of food packaging design, customization enhances the value of a product by meeting consumer needs. Personalization is also linked to adaptation, so the properties of the packaging can be improved from several points of view: functional, aesthetic, economic and ecological. Currently, functional and formal properties of packaging are not investigated in depth. However, the study of both properties is the basis for creating a new concept of personalized and sustainable product. In accordance with this approach, a conceptual design procedure of packaging with personalized and adapted geometries based on the digitization of fresh food is proposed in this work. This study is based on the application of advanced technologies for the design and development of food packaging, apples in this work, in order to improve the quality of the packaging. The results obtained show that it is possible to use advanced technologies in the early stages of product design in order to obtain competitive products adapted to new emerging needs.

8.
Materials (Basel) ; 12(3)2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30720750

ABSTRACT

The increased consumption of food requiring thermoformed packaging implies that the packaging industry demands customized solutions in terms of shapes and sizes to make each packaging unique. In particular, food industry increasingly requires more transparent packaging, with greater clarity and a better presentation of the product they contain. However, in turn, the differentiation of packaging is sought through its geometry and quality, as well as the arrangement of food inside the packaging. In addition, these types of packaging usually include ribs in the walls to improve their physical properties. However, these ribs also affect the final aesthetics of the product. In accordance with this, this research study analyses the mechanical properties of different relief geometries that can affect not only their aesthetics but also their strength. For this purpose, tensile and compression tests were carried out using thermoformed PET sheets. The results provide comparative data on the reliefs studied and show that there are differences in the mechanical properties according to shape, size and disposition in the package.

SELECTION OF CITATIONS
SEARCH DETAIL
...