Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Inorg Biochem ; 228: 111696, 2022 03.
Article in English | MEDLINE | ID: mdl-35030390

ABSTRACT

Through the reaction of copper(II) acetate with nicotinamide (pyridine-3-carboxylic acid amide, niacinamide) and some derivatives of N-phenylanthranilic acid (fenamates), seven new mixed-ligand copper(II) compounds were isolated: [Cu(tolf-O)(tolf-O,O')nia-N)2(EtOH)] (1), [Cu(tolf-O)(tolf-O,O')(nia-N)2(MeOH)] (2), [Cu(meclf-O)(meclf-O,O')(nia-N)2(EtOH)] (3), [Cu(meclf-O)(meclf-O,O')(nia-N)2(MeOH)] (4), [Cu(meclf-O)(meclf-O,O')(nia-N)2(ACN)] (5), [Cu(mef-O)(mef-O,O')(nia-N)2(EtOH)] (6) and [Cu(mef-O)(mef-O,O')(nia-N)2(ACN)] (7) containing a molecule of relevant solvent as ligand in their primary crystal structure (tolf = tolfenamate, meclf = meclofenamate, mef = mefenamate, nia = nicotinamide, EtOH = ethanol, MeOH = methanol, ACN = acetonitrile). The structures of the complexes were determined by single-crystal X-ray analysis. The intermolecular interactions were studied by Hirshfeld surface analysis. The complexes were characterized by IR, UV-vis and EPR spectroscopy and their redox properties were determined by cyclic voltammetry. The interaction of the complexes with bovine serum albumin was studied by fluorescence emission spectroscopy and the albumin-binding constants of the compounds were calculated. The interaction of the complexes with calf-thymus DNA was monitored by diverse techniques (UV-vis spectroscopy, cyclic voltammetry, viscosity measurements) suggesting intercalation as the most possible mode of binding. DNA-competitive studies of the complexes with ethidium bromide were monitored by fluorescence emission spectroscopy. The cytotoxic effects of copper(II) complexes on lung carcinoma cells and healthy cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric technique.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Coordination Complexes/chemistry , Copper/chemistry , DNA/chemistry , Niacinamide/chemistry , Serum Albumin, Bovine/chemistry , A549 Cells , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Crystallography, X-Ray/methods , Electron Spin Resonance Spectroscopy/methods , Ethidium/chemistry , Fenamates/chemistry , Humans , Intercalating Agents/chemistry , Oxidation-Reduction
2.
Acta Crystallogr C Struct Chem ; 75(Pt 6): 616-622, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31166912

ABSTRACT

Cyclam derivatives and their metal complexes have been found to exhibit an anti-HIV effect and stimulate the activity of stem cells from bone marrow. The strength of their binding to the CXCR4 receptor correlates with anti-HIV and stem-cell activities. Knowledge of the conformation and crystal packing of various macrocyclic metal complexes has become important in developing new effective anti-HIV drugs. The synthesis and preparation of single crystals of a new Cu2+-doped macrocyclic compound, (3,14-diethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]docosane)copper(II) bis(perchlorate)-3,14-diethyl-2,13-diaza-6,17-diazoniatricyclo[16.4.0.07,12]docosane bis(perchlorate) (0.69/0.31), {[Cu(C22H44N4)](ClO4)2}0.69·(C22H46N42+·2ClO4-)0.31, is reported. Characterization by X-ray diffraction analysis shows that the asymmetric unit contains half of a centrosymmetric molecule. The macrocyclic ligand in the compound adopts the most stable trans-III conformation. The Cu-N distances of 2.015 (3) and 2.047 (3) Šare normal, but the long axial Cu-O bond of 2.795 (3) Šmay be due to a combination of the Jahn-Teller effect and the strong in-plane ligand field. The crystal structure is stabilized by hydrogen bonding between secondary N-H groups, the N atoms of the macrocycle and the O atoms of the perchlorate anions. Hirshfeld surface analysis with 2D (two-dimensional) fingerprint plots indicates that the main contributions to the crystal packing are from H...H (58.0%) and H...O/O...H (41.9%) interactions. Electron paramagnetic resonance (EPR) properties are also described.

3.
Chempluschem ; 84(4): 358-367, 2019 04.
Article in English | MEDLINE | ID: mdl-31939215

ABSTRACT

Various substituted 2-hydroxybenzophenones were combined with aliphatic linear triamines to form pentadentate Schiff base ligands. Twelve new iron(III) complexes with the general formula [Fe(Ln )X].mCH3 CN (n=1-10; X=N3- , NCS- or NCSe- ; m=0-2) have been synthesized, and spectrally as well as structurally characterized. The structural analysis revealed a notable dependence of coordination polyhedra deformation as well as the spatial configuration of donor atoms on the length and symmetry of the Schiff base ligands. The magnetic properties of the compounds were investigated and the permanent high-spin state (S=5/2) for all reported compounds was established, and allowed calculation of zero-field-splitting parameters as well as coupling constants, which were further confirmed with DFT calculations. The solid-state EPR spectra were recorded at 293 K and 98 K, and in accordance with the magnetic measurements, showed a high-spin state in the measured temperature range.

4.
Molecules ; 23(4)2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29561827

ABSTRACT

X- and Q-band electron paramagnetic resonance (EPR) spectroscopy was used to characterize polycrystalline Cu(II) complexes that contained sodium 5-sulfonate salicylaldehyde thiosemicarbazones possessing a hydrogen, methyl, ethyl, or phenyl substituent at the terminal nitrogen. The ability of thiosemicarbazone proligands to generate superoxide radical anions and hydroxyl radicals upon their exposure to UVA irradiation in aerated aqueous solutions was evidenced by the EPR spin trapping technique. The UVA irradiation of proligands in neutral or alkaline solutions and dimethylsulfoxide (DMSO) caused a significant decrease in the absorption bands of aldimine and phenolic chromophores. Mixing of proligand solutions with the equimolar amount of copper(II) ions resulted in the formation of 1:1 Cu(II)-to-ligand complex, with the EPR and UV-Vis spectra fully compatible with those obtained for the dissolved Cu(II) thiosemicarbazone complexes. The formation of the complexes fully inhibited the photoinduced generation of reactive oxygen species, and only subtle changes were found in the electronic absorption spectra of the complexes in aqueous and DMSO solutions upon UVA steady-state irradiation. The dark redox activity of copper(II) complexes and proligand/Cu(II) aqueous solutions towards hydrogen peroxide which resulted in the generation of hydroxyl radicals, was confirmed by spin trapping experiments.


Subject(s)
Copper/chemistry , Spectrophotometry, Ultraviolet/methods , Thiosemicarbazones/chemistry , Ultraviolet Rays , Computer Simulation , Crystallization , Electron Spin Resonance Spectroscopy , Ligands , Solutions , Spin Labels , Thiosemicarbazones/chemical synthesis
5.
Chemistry ; 24(20): 5191-5203, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29155457

ABSTRACT

A series of novel iron(III) complexes of the general formula [Fe(L)X] (where L is a dianion of pentadentate Schiff base ligand N,N'-bis({2-hydroxy-3,5-dimethylphenyl}phenyl)methylidene-1,6-diamino-3-azapentane=H2 L1 for 1 and 2; N,N'-bis({2-hydroxy-3-ethoxyphenyl}methylidene)-1,6-diamino-3-azapentane=H2 L2 for 3 and 3⋅C3 H6 O) and X is terminal pseudohalido ligand (X=N3 for 1, X=NCS for 2, and X=NCSe for 3 and 3⋅C3 H6 O) were synthesized and thoroughly characterized. Magnetic measurements revealed the above room temperature spin crossover for isomorphic complexes 1 and 2 (T1/2 =441 K and T1/2 =435 K, respectively), whereas the solvent-free complex 3 showed a half complete spin crossover (T1/2 =250 K), which was detected by variable temperature crystallography as well. On the other hand, solvated complex 3⋅C3 H6 O exhibited permanent high spin state behaviour and either recrystallization or in situ thermal desolvation converts 3⋅C3 H6 O to solvent-free and spin-crossover-active form 3. Magnetic properties of all the reported complexes were also supported by EPR spectroscopy experiments and in addition, DFT and ab initio calculations were employed for the evaluation of the g-factor and zero field splitting parameters.

6.
Molecules ; 19(1): 980-91, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24434671

ABSTRACT

Redox active transition metal ions (e.g., iron and copper) have been implicated in the etiology of many oxidative stress-related diseases including also neurodegenerative disorders. Unbound copper can catalyze formation of reactive oxygen species (hydroxyl radicals) via Fenton reaction/Haber-Weiss chemistry and therefore, under physiological conditions, free copper is potentially toxic and very rarely exists inside cells. Copper(II) bound to the aminoacid L-histidine represents a species discovered in blood in the mid 60s and since then extensive research on this complex was carried out. Copper bound to L-histidine represents an exchangeable pool of copper(II) in equilibrium with the most abundant blood plasma protein, human serum albumin. The structure of this complex, in aqueous solution, has been a subject of many studies and reviews, however without convincing success. The significance of the (1:2) copper(II)-L-histidine complex at physiological pH documents its therapeutic applications in the treatment of Menkes disease and more recently in the treatment of infantile hypertrophic cardioencephalomyopathy. While recently the (1:2) Cu(II)-L-His complex has been successfully crystallized and the crystal structure was solved by X-ray diffraction, the structure of the complex in fluid solution at physiological pH is not satisfactorily known. The aim of this paper is to study the (1:2) Cu(II)-L-histidine complex at low temperatures by X-band and S-band EPR spectroscopy and at physiological pH at room temperature by Fourier transform CW-EPR spectroscopy.


Subject(s)
Histidine/analogs & derivatives , Organometallic Compounds/chemistry , Coordination Complexes/chemistry , Coordination Complexes/therapeutic use , Electron Spin Resonance Spectroscopy , Fourier Analysis , Histidine/chemistry , Histidine/therapeutic use , Humans , Hydrogen-Ion Concentration , Menkes Kinky Hair Syndrome/drug therapy , Molecular Conformation , Organometallic Compounds/therapeutic use , Solutions
7.
J Membr Biol ; 243(1-3): 1-13, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21814861

ABSTRACT

The influence of cholesterol and ß-sitosterol on egg yolk phosphatidylcholine (EYPC) bilayers is compared. Different interactions of these sterols with EYPC bilayers were observed using X-ray diffraction. Cholesterol was miscible with EYPC in the studied concentration range (0-50 mol%), but crystallization of ß-sitosterol in EYPC bilayers was observed at X ≥ 41 mol% as detected by X-ray diffraction. Moreover, the repeat distance (d) of the lamellar phase was similar upon addition of the two sterols up to mole fraction 17%, while for X ≥ 17 mol% it became higher in the presence of ß-sitosterol compared to cholesterol. SANS data on suspensions of unilamellar vesicles showed that both cholesterol and ß-sitosterol similarly increase the EYPC bilayer thickness. Cholesterol in amounts above 33 mol% decreased the interlamellar water layer thickness, probably due to "stiffening" of the bilayer. This effect was not manifested by ß-sitosterol, in particular due to the lower solubility of ß-sitosterol in EYPC bilayers. Applying the formalism of partial molecular areas, it is shown that the condensing effect of both sterols on the EYPC area at the lipid-water interface is small, if any. The parameters of ESR spectra of spin labels localized in different regions of the EYPC bilayer did not reveal any differences between the effects of cholesterol and ß-sitosterol in the range of full miscibility.


Subject(s)
Cholesterol/chemistry , Egg Yolk/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Sitosterols/chemistry , Cholesterol/metabolism , Lipid Bilayers/metabolism , Liposomes/chemistry , Liposomes/metabolism , Phosphatidylcholines/metabolism , Sitosterols/metabolism
8.
Mol Biotechnol ; 37(1): 48-51, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17914163

ABSTRACT

Camptothecin (CPT) is an anticancer drug that inhibits topoisomerase I (Topo I) by forming a ternary DNA-CPT-Topo I complex. However, it has also been shown that UVA-irradiated CPT in the absence of Topo I produces significant DNA damage to cancer cells. In this work, we explored and identified free radicals generated in these processes. From the low-temperature EPR spectrum of Cu(II)-CPT complex, a proximity between Cu(II) ion and 20-hydroxy group of lactone E ring of CPT is proposed. Upon irradiation (lambda = 365 nm) of the Cu(II)-CPT complex in de-oxygenated dimethylsulfoxide (DMSO), the EPR signal of Cu(II) measured in situ at room temperature shows formal first-order exponential decay with a formal half-life of 11 min. By the use of a specific Cu(I) chelating agent, neocuproine, it was shown that, during this process, Cu(II) is reduced to Cu(I). The loss in EPR signal intensity of the Cu(II)-CPT complex upon irradiation is accompanied by the appearance of a new EPR signal at g approximately 2.0022. Application of the spin trap nitrosodurene (ND) revealed that the main radical product formed upon continuous irradiation of CPT in DMSO solutions is the hydroxyl radical (trapped in DMSO as the *CH3 adduct) and superoxide radical. Application of 2,2,6,6-tetramethyl-4-piperidinol has revealed that irradiation of CPT in aerated DMSO solution also leads to formation of singlet oxygen (1O2). Our spectroscopic experiments indicate that CPT is a promising photosensitizer and that radicals and singlet oxygen generated upon illumination play a central role in DNA cleavage and in the induction of apoptosis in cancer cells.


Subject(s)
Camptothecin/chemistry , Camptothecin/radiation effects , Copper/chemistry , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/radiation effects , Camptothecin/pharmacology , DNA/chemistry , DNA/drug effects , DNA Cleavage , Electron Spin Resonance Spectroscopy , Free Radicals/analysis , Humans , Photochemistry , Photosensitizing Agents/pharmacology , Ultraviolet Rays
9.
Int J Biochem Cell Biol ; 39(1): 44-84, 2007.
Article in English | MEDLINE | ID: mdl-16978905

ABSTRACT

Reactive oxygen species (ROS) and reactive nitrogen species (RNS, e.g. nitric oxide, NO(*)) are well recognised for playing a dual role as both deleterious and beneficial species. ROS and RNS are normally generated by tightly regulated enzymes, such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. Overproduction of ROS (arising either from mitochondrial electron-transport chain or excessive stimulation of NAD(P)H) results in oxidative stress, a deleterious process that can be an important mediator of damage to cell structures, including lipids and membranes, proteins, and DNA. In contrast, beneficial effects of ROS/RNS (e.g. superoxide radical and nitric oxide) occur at low/moderate concentrations and involve physiological roles in cellular responses to noxia, as for example in defence against infectious agents, in the function of a number of cellular signalling pathways, and the induction of a mitogenic response. Ironically, various ROS-mediated actions in fact protect cells against ROS-induced oxidative stress and re-establish or maintain "redox balance" termed also "redox homeostasis". The "two-faced" character of ROS is clearly substantiated. For example, a growing body of evidence shows that ROS within cells act as secondary messengers in intracellular signalling cascades which induce and maintain the oncogenic phenotype of cancer cells, however, ROS can also induce cellular senescence and apoptosis and can therefore function as anti-tumourigenic species. This review will describe the: (i) chemistry and biochemistry of ROS/RNS and sources of free radical generation; (ii) damage to DNA, to proteins, and to lipids by free radicals; (iii) role of antioxidants (e.g. glutathione) in the maintenance of cellular "redox homeostasis"; (iv) overview of ROS-induced signaling pathways; (v) role of ROS in redox regulation of normal physiological functions, as well as (vi) role of ROS in pathophysiological implications of altered redox regulation (human diseases and ageing). Attention is focussed on the ROS/RNS-linked pathogenesis of cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), rheumatoid arthritis, and ageing. Topics of current debate are also reviewed such as the question whether excessive formation of free radicals is a primary cause or a downstream consequence of tissue injury.


Subject(s)
Antioxidants/metabolism , Nitric Oxide/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Signal Transduction , Animals , Apoptosis , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/physiopathology , Brain Diseases/metabolism , Brain Diseases/pathology , Brain Diseases/physiopathology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cardiovascular Diseases/physiopathology , Cellular Senescence , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Diabetes Mellitus/physiopathology , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/physiopathology
10.
Mol Cell Biochem ; 266(1-2): 37-56, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15646026

ABSTRACT

The development of cancer in humans and animals is a multistep process. The complex series of cellular and molecular changes participating in cancer development are mediated by a diversity of endogenous and exogenous stimuli. One type of endogenous damage is that arising from intermediates of oxygen (dioxygen) reduction - oxygen-free radicals (OFR), which attacks not only the bases but also the deoxyribosyl backbone of DNA. Thanks to improvements in analytical techniques, a major achievement in the understanding of carcinogenesis in the past two decades has been the identification and quantification of various adducts of OFR with DNA. OFR are also known to attack other cellular components such as lipids, leaving behind reactive species that in turn can couple to DNA bases. Endogenous DNA lesions are genotoxic and induce mutations. The most extensively studied lesion is the formation of 8-OH-dG. This lesion is important because it is relatively easily formed and is mutagenic and therefore is a potential biomarker of carcinogenesis. Mutations that may arise from formation of 8-OH-dG involve GC --> TA transversions. In view of these findings, OFR are considered as an important class of carcinogens. The effect of OFR is balanced by the antioxidant action of non-enzymatic antioxidants as well as antioxidant enzymes. Non-enzymatic antioxidants involve vitamin C, vitamin E, carotenoids (CAR), selenium and others. However, under certain conditions, some antioxidants can also exhibit a pro-oxidant mechanism of action. For example, beta-carotene at high concentration and with increased partial pressure of dioxygen is known to behave as a pro-oxidant. Some concerns have also been raised over the potentially deleterious transition metal ion-mediated (iron, copper) pro-oxidant effect of vitamin C. Clinical studies mapping the effect of preventive antioxidants have shown surprisingly little or no effect on cancer incidence. The epidemiological trials together with in vitro experiments suggest that the optimal approach is to reduce endogenous and exogenous sources of oxidative stress, rather than increase intake of anti-oxidants. In this review, we highlight some major achievements in the study of DNA damage caused by OFR and the role in carcinogenesis played by oxidatively damaged DNA. The protective effect of antioxidants against free radicals is also discussed.


Subject(s)
Antioxidants/metabolism , Cell Transformation, Neoplastic/metabolism , DNA Damage , Mutagenesis , Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Animals , DNA/metabolism , DNA Repair , Free Radicals/metabolism , Humans , Incidence , Lipid Metabolism , Neoplasms/epidemiology , Oxidation-Reduction , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...