Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Res Health Sci ; 23(1): e00576, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37571947

ABSTRACT

BACKGROUND: Wastewater treatment plants (WWTPs) are a source of airborne bacterial contamination that can pose health risks to staff. The aim of this study was to evaluate seasonal variations in the health risks of exposure to Staphylococcus aureus bioaerosols using the quantitative microbial risk assessment (QMRA) approach in a WWTP in Hamadan, Iran. STUDY DESIGN: This was a descriptive cross-sectional study. METHODS: This study determined the emission concentrations of S. aureus bioaerosols in summer and winter. Then, the health risks of three exposure scenarios (the worker, field engineer, and laboratory technician) were evaluated using the QMRA approach. The bioaerosol samples were collected every 12 days in both summer and winter of 2021 with a nutrient agar using a single-stage cascade impactor (Quick Take 30, SKC Inc.) in both outdoor and indoor environments. RESULTS: The results demonstrated that in both seasons, S. aureus bioaerosol concentrations in outdoor and indoor environments were below the standard established by the American Conference of Governmental Industrial Hygienists (500 CFU/m3 ). While in summer, the annual infection risks and the disease burden for the three exposure scenarios in both outdoor and indoor environments were higher than the United States Environmental Protection Agency (≤10-4 pppy) and the World Health Organization (WHO) (≤10-6 DALYs pppy-1) benchmarks, respectively. CONCLUSION: The findings provided high health risks for staff in the three exposure scenarios of an indoor environment, which should not be ignored, as well as emphasizing the use of the QMRA approach to estimate health risks caused by occupational exposure to bioaerosols and taking executive measures to protect staff working in the WWTPs.


Subject(s)
Wastewater , Water Purification , Humans , Seasons , Iran , Staphylococcus aureus , Cross-Sectional Studies , Risk Assessment
2.
Toxics ; 11(2)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36850986

ABSTRACT

A wide range of volatile organic solvents, including aliphatic and aromatic hydrocarbons, alcohols, and ketones, are used in the production of paints, and they comprise more than 30% of the ingredients of paints. The present study was designed to evaluate the occupational exposure to 15 volatile organic compounds (VOCs, including benzene, toluene, ethylbenzene, xylene, styrene, n-hexane, n-heptane, n-nonane, trichloroethylene, tetrachloroethylene, n-butyl acetate, n-octane, n-decane, dichlorofluoromethane, and acetone) in Iranian paint production factories and subsequently, the associated health risks. The samples were collected from the respiratory zone of workers using the NIOSH 1501 method, and their qualitative and quantitative characterization was performed using gas chromatography-mass spectrometry and gas chromatography-flame ionization detector, respectively. The individual concentrations of VOCs ranged from 23.76 ± 0.57 µg m-3 (acetone) to 92489.91 ± 0.65 µg m-3 (m,p-xylene). The predominant compounds were m,p-xylene (up to 92489.91 ± 0.65 µg m-3), ethylbenzene (up to 91188.95 ± 0.34 µg m-3), and toluene (up to 46088.84 ± 0.14 µg m-3). The non-cancer risks of benzene, n-nonane, trichloroethylene, tetrachloroethylene, xylene, and ethylbenzene surpassed the reference value in most of the sectors. In addition, total lifetime risks of cancer were in the range of 1.8 × 10-5-3.85 × 10-3, suggesting that there was a risk of carcinogenesis in all studied sections, mainly due to ethylbenzene and benzene. Considering their high exposure concentrations and their associated non-carcinogenic and carcinogenic risks, biological monitoring of workers and the use of technical and modern engineering control measures are recommended.

3.
J Environ Health Sci Eng ; 19(1): 1057-1067, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34150294

ABSTRACT

The aim of this study was to evaluate the potential pathogenic bacterial aerosols produced from the municipal solid waste landfill site and its health risk assessment in the Hamadan city at west of Iran. In this study, air samples were collected every month during spring and summer at six locations including the active zone, leachate collection pond, infectious waste landfill, upwind, closure landfill, and downwind using the Andersen impactor. Spatial and seasonal variations of the potential pathogenic bacterial aerosols were detected. Also, Health risk associated were estimated based on the average daily dose rates (ADD) of exposure by inhalation. The mean concentration of potentially pathogenic bacterial aerosols were 468.7 ± 140 CFU m- 3 1108.5 ± 136.9 CFU m- 3 detected in the active zone in spring and summer, respectively. Also, there was a significant relationship between meteorological parameters and bacterial concentration (p < 0.05). The predominant potential pathogenic bacterial identified in the spring were Proteus mirabilis, Streptococcus sp., and Pseudomonas sp., while in summer were Pseudomonas sp., Staphylococcus aureus, and Escherichia coli. The hazard quotient (HQ) in both seasons were less of 1. Bacteria were spread throughout the landfill space, but their maximum density was observed around the active zone and leachate collection pond. This study highlights the importance of exposure to potential pathogenic bacterial aerosols in the summer and its adverse effects, especially in the MSW landfill site active zone. Finally, controlled exposure can reduce the health hazard caused by the potential pathogenic bacterial aerosols.

4.
Article in English | MEDLINE | ID: mdl-26380092

ABSTRACT

BACKGROUND AND AIM: Tropospheric ozone is a problem with multi aspects - hazard to human health, plant, and welfare and a key factor to climate change, air pollution and atmosphere chemistry, as well. Behavior of ozone and nitrogen oxides (NO, and NO2) concentration is highly complex and variable; therefore, their trends as short and long-term were significantly attended. Most of the studies were carried out on the behavior of pollutant concentrations in North America, Europe, and East Asia, but few studies have been conducted in west Asia. The aim of this study was to assess daily changes and long-term trend of ozone and nitrogen oxides concentrations in Tehran city, Iran from March 2002 to September 2011. MATERIAL AND METHODS: Data were collected from 18 air quality monitoring stations. The data were sorted as daily mean of 10 years (daily changes) and annual mean for each year (long-term trend). One-sample test was used to assess the statistical significance. RESULTS: Current findings indicated that changes of ozone, NO, and NO2 concentrations are dependent from job shifts and photochemical reactions. Annual mean concentrations of ozone and NO2 were gradually increased, long-term trend of ozone and NO2 concentration indicated. The correlation between long term trend of ozone and NO2 was significant (p < 0.05). CONCLUSION: The controlling program was the most important factor in long-term concentration of ozone, and nitrogen oxides, but some problems and difficulties were accounted to perform controlling program.

SELECTION OF CITATIONS
SEARCH DETAIL
...