Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 3114, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34035293

ABSTRACT

Materials and strategies applicable to the dynamic transport of microdroplets are relevant to surface fluidics, self-cleaning materials, thermal management systems, and analytical devices. Techniques based on electrowetting, topographic micropatterns, and thermal/chemical gradients have advanced considerably, but dynamic microdroplet transport remains a challenge. This manuscript reports the fabrication of mechano-tunable, microtextured chemical gradients on elastomer films and their use in controlled microdroplet transport. Specifically, discreet mechanical deformations of these films enabled dynamic tuning of the microtextures and thus transport along surface-chemical gradients. The interplay between the driving force of the chemical gradient and the microtopography was characterized, facilitating accurate prediction of the conditions (droplet radius and roughness) which supported transport. In this work, the use of microtextured surface chemical gradients in mechano-adaptive materials with microdroplet manipulation functionality was highlighted.

2.
ACS Appl Mater Interfaces ; 11(36): 33452-33457, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31432664

ABSTRACT

Silicone elastomers are used in a variety of "stretchable" technologies (e.g., wearable electronics and soft robotics) that require the elastomeric components to accommodate varying magnitudes of mechanical stress during operation; however, there is limited understanding of how mechanical stress influences the surface chemistry of these elastomeric components despite the potential importance of this property with regards to overall function. In this study, plasma-oxidized silicone (poly(dimethylsiloxane)) films were systematically subjected to various amounts of tensile stress and the resulting surface chemical changes were monitored using contact angle measurements, X-ray photoelectron spectroscopy, and gas chromatography-mass spectrometry. Understanding the influence of mechanical stress on these materials made possible the development of a facile method for the rapid, on-demand switching of surface wettability and the generation of surface wettability patterns and gradients. The use of mechanical stress to control surface wettability is broadly applicable to the fields of microfluidics, soft robotics, printing, and to the design of adaptable materials and sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...