Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Nanomedicine ; 19: 4103-4120, 2024.
Article in English | MEDLINE | ID: mdl-38736658

ABSTRACT

Introduction: Gold nanoparticles are promising candidates as vehicles for drug delivery systems and could be developed into effective anticancer treatments. However, concerns about their safety need to be identified, addressed, and satisfactorily answered. Although gold nanoparticles are considered biocompatible and nontoxic, most of the toxicology evidence originates from in vitro studies, which may not reflect the responses in complex living organisms. Methods: We used an animal model to study the long-term effects of 20 nm spherical AuNPs coated with bovine serum albumin. Mice received a 1 mg/kg single intravenous dose of nanoparticles, and the biodistribution and accumulation, as well as the organ changes caused by the nanoparticles, were characterized in the liver, spleen, and kidneys during 120 days. Results: The amount of nanoparticles in the organs remained high at 120 days compared with day 1, showing a 39% reduction in the liver, a 53% increase in the spleen, and a 150% increase in the kidneys. The biological effects of chronic nanoparticle exposure were associated with early inflammatory and fibrotic responses in the organs and were more pronounced in the kidneys, despite a negligible amount of nanoparticles found in renal tissues. Conclusion: Our data suggest, that although AuNPs belong to the safest nanomaterial platforms nowadays, due to their slow tissue elimination leading to long-term accumulation in the biological systems, they may induce toxic responses in the vital organs, and so understanding of their long-term biological impact is important to consider their potential therapeutic applications.


Subject(s)
Gold , Kidney , Liver , Metal Nanoparticles , Serum Albumin, Bovine , Spleen , Animals , Gold/chemistry , Gold/pharmacokinetics , Gold/toxicity , Gold/administration & dosage , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/administration & dosage , Spleen/drug effects , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/pharmacokinetics , Kidney/drug effects , Kidney/metabolism , Tissue Distribution , Liver/drug effects , Liver/metabolism , Mice , Male , Particle Size
2.
Viruses ; 14(4)2022 03 25.
Article in English | MEDLINE | ID: mdl-35458415

ABSTRACT

In only two years, the coronavirus disease 2019 (COVID-19) pandemic has had a devastating effect on public health all over the world and caused irreparable economic damage across all countries. Due to the limited therapeutic management of COVID-19 and the lack of tailor-made antiviral agents, finding new methods to combat this viral illness is now a priority. Herein, we report on a specific oligonucleotide-based RNA inhibitor targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It displayed remarkable spontaneous cellular uptake, >94% efficiency in reducing RNA-dependent RNA polymerase (RdRp) RNA levels in transfected lung cell lines, and >98% efficiency in reducing SARS-CoV-2 RNA levels in samples from patients hospitalized with COVID-19 following a single application.


Subject(s)
COVID-19 Drug Treatment , Oligonucleotides , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Oligonucleotides/pharmacology , Oligonucleotides/therapeutic use , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/genetics
3.
RSC Adv ; 10(40): 23916-23929, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-35517346

ABSTRACT

Drug-induced nephrotoxicity is a frequent adverse event and a dose-limiting factor in patient treatment and is a leading cause of prospective drug attrition during pharmaceutical development. Despite the obvious benefits of nanotherapeutics in healthcare strategies, the clearance of imaging agents and nanocarriers from the body following their therapeutic or diagnostic application generates concerns about their safety for human health. Considering the potency of nanoparticles and their massive utilization in biomedicine the impact of magnetic nanoparticles (MNPs) on cells forming the filtration apparatus of the kidney was studied. Using primary mouse renal glomerular podocytes and mesangial cells, we investigated their response to exposure to magnetic nanoparticles coated with polyethylene glycol and bovine serum albumin. Cultured podocytes were more sensitive to MNPs than mesangial cells displaying signs of cell damage and stronger inflammatory response. Both types of MNPs induced the remodeling of actin fibers, affected the cell shape and triggered expression of inflammatory cytokines TNFα and IL-6 in podocytes. On the other hand, iNOS was induced in both renal cell types but only by MNPs with a polyethylene glycol coating. Our results have revealed that the type of cell and the type of nanoparticle coating might be the strongest determinants of cellular response toward nanoparticle exposure. Differences in susceptibility of cells to MNPs might be evident also between neighboring renal cell subpopulations integrally forming functional sub-units of this organ.

4.
Article in English | MEDLINE | ID: mdl-31561890

ABSTRACT

Progressive expansion of nanomaterials in our everyday life raises concerns about their safety for human health. Although kidneys are the primary organs of xenobiotic elimination, little attention has been paid to the kidneys in terms of nanotoxicological studies up to now. Here we investigate the cytotoxic and genotoxic potential of four solid-core uncoated inorganic nanoparticles (TiO2NPs, SiO2NPs, Fe3O4NPs and AuNPs) using the human renal proximal tubule epithelial TH1 cells. To mimic the in vivo conditions more realistic, TH1 cells were exposed in vitro to inorganic NPs under static as well as dynamic conditions for 3 h and 24 h. The medium throughput alkaline comet assay (12 minigels per slide) was employed to evaluate the impact of these NPs on genome integrity and their capacity to produce oxidative lesions to DNA. The accumulation and localization of studied inorganic NPs inside the cells was monitored by transmission electron microscopy (TEM) and the efficacy of internalization of particular NPs was determined by atomic absorption spectroscopy (AAS) and inductively coupled plasma mass spectrometry (ICP-MS). From all the tested NPs, only Fe3O4NPs induced a slight cytotoxicity in TH1 cells exposed to high concentrations (>700 µg/ml) for 24 h. On the other hand, the inorganic NPs did not increase significantly the level of DNA strand breaks or oxidative DNA damage regardless of the treatment mode (static vs. dynamic conditions). Interestingly, substantial differences were observed in the internalized amount of inorganic NPs in TH1 cells exposed to equivalent (2.2 µg/ml) concentration. Fe3O4NPs were most efficiently taken up while the lowest quantity of particles was determined in TiO2NPs-treated cells. As the particle size and shape of individual inorganic NPs in culture medium was nearly identical, it is reasonable to suppose that the chemical composition may contribute to the differences in the efficacy of NPs uptake.


Subject(s)
Epithelial Cells/drug effects , Kidney Tubules, Proximal/drug effects , Metal Nanoparticles/toxicity , Th1 Cells/drug effects , Comet Assay , DNA Breaks , DNA Damage , Dynamic Light Scattering , Gold/toxicity , Humans , Kidney Tubules, Proximal/cytology , Magnetite Nanoparticles/toxicity , Oxidative Stress , Phagocytosis , Rheology , Silicon Dioxide/toxicity , Single-Cell Analysis , Time Factors , Titanium/toxicity
5.
Carbohydr Polym ; 192: 104-110, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29691001

ABSTRACT

Ionically crosslinked chitosan/tripolyphosphate (Chit/TPP) particles have been widely tested in biomedical applications, particularly as potential carriers for controlled drug delivery. Since Chit/TPP particles are typically prepared under acidic conditions, their application in physiological environment and correct evaluation of biological data ultimately require knowledge on their physico-chemical properties and overall behaviour at physiological pH, as they may differ substantially from those exhibited after preparation. In this study, Chit/TPP complexes prepared at pH 4.43 were exposed to a physiological and slightly alkaline pH of 7.42 and 8.90, respectively, and analysed by inductively coupled plasma mass spectrometry and Fourier transform infrared spectroscopy with attenuated total reflectance for TPP content. In parallel, osmolarity measurements as well as theoretical calculations were used to interpret the composition and behaviour of Chit/TPP complexes upon pH elevation. Exposure of Chit/TPP complexes to a pH in the physiological range resulted in their practically complete dissociation into free chitosan chains. This leads to a significant consequence that Chit/TPP particles prepared at acidic pH do not exist under physiological conditions.

6.
Sci Rep ; 8(1): 1637, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29374272

ABSTRACT

A next-generation cure for type 1 diabetes relies on immunoprotection of insulin-producing cells, which can be achieved by their encapsulation in microspheres made of non-covalently crosslinked hydrogels. Treatment success is directly related to the microsphere structure that is characterized by the localization of the polymers constituting the hydrogel material. However, due to the lack of a suitable analytical method, it is presently unknown how the microsphere structure changes in vivo, which complicates evaluation of different encapsulation approaches. Here, confocal Raman microscopy (CRM) imaging was tailored to serve as a powerful new tool for tracking structural changes in two major encapsulation designs, alginate-based microbeads and multi-component microcapsules. CRM analyses before implantation and after explantation from a mouse model revealed complete loss of the original heterogeneous structure in the alginate microbeads, making the intentionally high initial heterogeneity a questionable design choice. On the other hand, the structural heterogeneity was conserved in the microcapsules, which indicates that this design will better retain its immunoprotective properties in vivo. In another application, CRM was used for quantitative mapping of the alginate concentration throughout the microbead volume. Such data provide invaluable information about the microenvironment cells would encounter upon their encapsulation in alginate microbeads.

8.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 161-168, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27770877

ABSTRACT

Comprehensive characterization of nanoparticles associated with investigation of their cellular uptake creates the basis on which fundamental in vitro and in vivo studies can be built. In this work, a complex analysis of various surface-modified magnetite nanoparticles in biologically relevant environment is reported and the promotion of incorrect characterization into the results obtained from model biological experiments leading to false conclusions is demonstrated. Via a bottom-up approach from particle characterization by DLS towards interpretation of biological data based on cellular uptake, this work draws attention to the systematic propagation of errors stemming from inaccurate determination of input parameters for DLS, improper selection of particle size distribution, inadequate sampling, unknown colloidal behavior and the omission of fraction of particles complying with the internalization threshold. In addition, cellular uptake depending on the number of treated cells is shown. The definition of cellular uptake efficacy reflecting the size distribution of particles beside their absolute internalization is postulated.


Subject(s)
Chemical Phenomena , Intracellular Space/metabolism , Magnetite Nanoparticles/chemistry , A549 Cells , Colloids/chemistry , Dynamic Light Scattering , Endocytosis , Humans , Hydrodynamics , Magnetite Nanoparticles/ultrastructure , Particle Size , Solutions
9.
Carbohydr Polym ; 151: 488-499, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27474593

ABSTRACT

The controlled preparation of chitosan particles is far from being trivial due to a considerable number of experimental parameters. For chitosan-tripolyphosphate (TPP) particles we evaluate the impact of chemical (type of chitosan, concentration, chitosan to TPP ratio, pH, ionic strength) and process factors (dialysis, stirring rate, rate of TPP addition, temperature, needle diameter) on the size and colloidal stability. The particles were prepared at pH=6.0 at which chitosan adopts the coiled conformation that is discussed as the dominant factor in controlling the stoichiometry of crosslinking reaction shifted towards TPP. These conditions result in identical particle size around 400nm and zeta potential around 22mV. The colloidal stability evaluated 24 hours after preparation depends on the amount of TPP during crosslinking. Under the same conditions, the colloidal stability up to 1 month is demonstrated. Several recommendations are provided to increase the control over formation of chitosan-TPP particles.

SELECTION OF CITATIONS
SEARCH DETAIL
...