Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Emerg Care ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38471759

ABSTRACT

OBJECTIVE: Pediatric sepsis screening is becoming the standard of care for children presenting to the emergency department (ED) and has been shown to improve recognition of severe sepsis, but it is unknown if these screening tools can predict progression of disease. The objective of this study was to determine if any elements of a sepsis triage trigger tool were predictive of progression to hypotensive shock in children presenting to the ED with fever and tachycardia. METHODS: This study is a retrospective case-control study of children ≤18 years presenting to an ED with fever and tachycardia, comparing those who went on to develop hypotensive shock in the subsequent 24 hours (case) to those who did not (control). Primary outcome was the proportion of encounters where the patient had specific abnormal vital signs or clinical signs as components of the sepsis triage score. The secondary outcomes were the proportion of encounters where the patient had a sepsis risk factor. RESULTS: During the study period, there were 94 patients who met case criteria and 186 controls selected. In the adjusted multivariable model, the 2 components of the sepsis triage score that were more common in case patients were the presence of severe cerebral palsy (adjusted odds ratio, 9.4 [3.7, 23.9]) and abnormal capillary refill at triage (adjusted odds ratio, 3.1 [1.4, 6.9]). CONCLUSIONS: Among children who present to a pediatric ED with fever and tachycardia, those with prolonged capillary refill at triage or severe cerebral palsy were more likely to progress to decompensated septic shock, despite routine ED care.

2.
Biomedicines ; 11(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37509447

ABSTRACT

Traumatic brain injury (TBI) results in the generation of tau. As hyperphosphorylated tau (p-tau) is one of the major consequences of TBI, targeting p-tau in TBI may lead to the development of new therapy. Twenty-five pigs underwent a controlled cortical impact. One hour after TBI, pigs were administered either vehicle (n = 13) or PNT001 (n = 12), a monoclonal antibody for the cis conformer of tau phosphorylated at threonine 231. Plasma biomarkers of neural injury were assessed for 14 days. Diffusion tensor imaging was performed at day 1 and 14 after injury, and these were compared to historical control animals (n = 4). The fractional anisotropy data showed significant white matter injury for groups at 1 day after injury in the corona radiata. At 14 days, the vehicle-treated pigs, but not the PNT001-treated animals, exhibited significant white matter injury compared to sham pigs in the ipsilateral corona radiata. The PNT001-treated pigs had significantly lower levels of plasma glial fibrillary acidic protein (GFAP) at day 2 and day 4. These findings demonstrate a subtle reduction in the areas of white matter injury and biomarkers of neurological injury after treatment with PNT001 following TBI. These findings support additional studies for PNT001 as well as the potential use of this agent in clinical trials in the near future.

3.
Neurocrit Care ; 38(2): 242-253, 2023 04.
Article in English | MEDLINE | ID: mdl-36207491

ABSTRACT

BACKGROUND: Ketamine has traditionally been avoided as an induction agent for tracheal intubation in patients with neurologic conditions at risk for intracranial hypertension due to conflicting data in the literature. The objective of this study was to evaluate and compare the effects of ketamine versus other medications as the primary induction agent on peri-intubation neurologic, hemodynamic and respiratory associated events in pediatric patients with neurologic conditions at risk for intracranial hypertension. METHODS: This retrospective observational study enrolled patients < 18 years of age at risk for intracranial hypertension who were admitted to a quaternary children's hospital between 2015 and 2020. Associated events included neurologic, hemodynamic and respiratory outcomes comparing primary induction agents of ketamine versus non-ketamine for tracheal intubation. RESULTS: Of 143 children, 70 received ketamine as the primary induction agent prior to tracheal intubation. Subsequently after tracheal intubation, all the patients received adjunct analgesic and sedative medications (fentanyl, midazolam, and/or propofol) at doses that were inadequate to induce general anesthesia but would keep them comfortable for further diagnostic workup. There were no significant differences between associated neurologic events in the ketamine versus non-ketamine groups (p = 0.42). This included obtaining an emergent computed tomography scan (p = 0.28), an emergent trip to the operating room within 5 h of tracheal intubation (p = 0.6), and the need for hypertonic saline administration within 15 min of induction drug administration for tracheal intubation (p = 0.51). There were two patients who had clinical and imaging evidence of herniation, which was not more adversely affected by ketamine compared with other medications (p = 0.49). Of the 143 patients, 23 had pre-intubation and post-intubation intracranial pressure values recorded; 11 received ketamine, and 3 of these patients had intracranial hypertension that resolved or improved, whereas the remaining 8 children had intracranial pressure within the normal range that was not exacerbated by ketamine. There were no significant differences in overall associated hemodynamic or respiratory events during tracheal intubation and no 24-h mortality in either group. CONCLUSIONS: The administration of ketamine as the primary induction agent prior to tracheal intubation in combination with other agents after tracheal intubation in children at risk for intracranial hypertension was not associated with an increased risk of peri-intubation associated neurologic, hemodynamic or respiratory events compared with those who received other induction agents.


Subject(s)
Intracranial Hypertension , Ketamine , Humans , Child , Ketamine/therapeutic use , Intracranial Hypertension/drug therapy , Analgesics/therapeutic use , Fentanyl/adverse effects , Midazolam/therapeutic use
4.
J Neurotrauma ; 40(1-2): 74-85, 2023 01.
Article in English | MEDLINE | ID: mdl-35876453

ABSTRACT

Traumatic brain injury (TBI) causes significant white matter injury, which has been characterized by various rodent and human clinical studies. The exact time course of imaging changes in a pediatric brain after TBI and its relation to biomarkers of injury and cellular function, however, is unknown. To study the changes in major white matter structures using a valid model of TBI that is comparable to a human pediatric brain in terms of size and anatomical features, we utilized a four-week-old pediatric porcine model of injury with controlled cortical impact (CCI). Using diffusion tensor imaging differential tractography, we show progressive anisotropy changes at major white matter tracts such as the corona radiata and inferior fronto-occipital fasciculus between day 1 and day 30 after injury. Moreover, correlational tractography shows a large part of bilateral corona radiata having positive correlation with the markers of cellular respiration. In contrast, bilateral corona radiata has a negative correlation with the plasma biomarkers of injury such as neurofilament light or glial fibrillary acidic protein. These are expected correlational findings given that higher integrity of white matter would be expected to correlate with lower injury biomarkers. We then studied the magnetic resonance spectroscopy findings and report decrease in a N-acetylaspartate/creatinine (NAA/Cr) ratio at the pericontusional cortex, subcortical white matter, corona radiata, thalamus, genu, and splenium of corpus callosum at 30 days indicating injury. There was also an increase in choline/creatinine ratio in these regions indicating rapid membrane turnover. Given the need for a pediatric TBI model that is comparable to human pediatric TBI, these data support the use of a pediatric pig model with CCI in future investigations of therapeutic agents. This model will allow future TBI researchers to rapidly translate our pre-clinical study findings into clinical trials for pediatric TBI.


Subject(s)
Brain Injuries, Traumatic , White Matter , Animals , Child , Humans , Anisotropy , Biomarkers/analysis , Biomarkers/blood , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/diagnostic imaging , Creatinine/blood , Diffusion Tensor Imaging/methods , Swine , White Matter/diagnostic imaging
5.
Neurotrauma Rep ; 3(1): 178-184, 2022.
Article in English | MEDLINE | ID: mdl-35558731

ABSTRACT

Transcriptomic investigations of traumatic brain injury (TBI) can give us deep insights into the pathological and compensatory processes post-injury. Thus far, transcriptomic studies in TBI have mostly used microarrays and have focused on rodent models. However, a large animal model of TBI bears a much stronger resemblance to human TBI with regard to the anatomical details, mechanics of injury, genetics, and, possibly, molecular response. Because of the advantages of a large animal TBI model, we investigated the gene expression changes between injured and uninjured sides of pig cerebral cortex after TBI. Given acute inflammation that follows after TBI and the important role that immune response plays in neuroplasticity and recovery, we hypothesized that transcriptional changes involving immune function will be upregulated. Eight female 4-week-old piglets were injured on the right hemisphere with controlled cortical impact (CCI). At 24 h after TBI, pericontusional cortex tissues from the injured side and contralateral cortical tissues were collected. After RNA extraction, library preparation and sequencing as well as gene expression changes between the ipsi- and contralateral sides were compared. There were 6642 genes that were differentially expressed between the ipsi- and contralateral sides, and 1993 genes among them had at least 3-fold differences. Differentially expressed genes were enriched for biological processes related to immune system activation, regulation of immune response, and leukocyte activation. Many of the differentially expressed genes, such as CD4, CD86, IL1A, IL23R, and IL1R1, were major regulators of immune function. This study demonstrated some of the major transcriptional changes between the pericontusional and contralateral tissue at an acute time point after TBI in pigs.

6.
J Neurotrauma ; 39(13-14): 935-943, 2022 07.
Article in English | MEDLINE | ID: mdl-35369719

ABSTRACT

To establish the clinical relevance of porcine model of traumatic brain injury (TBI) using the plasma biomarkers of injury with diffusion tensor imaging (DTI) over 30 days, we performed a randomized, blinded, pre-clinical trial using Yorkshire pigs weighing 7-10 kg. Twelve pigs were subjected to Sham injury (n = 5) by skin incision or TBI (n = 7) by controlled cortical impact. Blood samples were collected before the injury, then at approximately 5-day intervals until 30 days. Both groups also had DTI at 24 h and at 30 days after injury. Plasma samples were isolated and single molecule array (Simoa) was performed for glial fibrillary acidic protein (GFAP) and neurofilament light (NFL) levels. Afterwards, brain tissue samples were stained for ß-APP. DTI showed fractional anisotropy (FA) decrease in the right corona radiata (ipsilateral to injury), contralateral corona radiata, and anterior corpus callosum at 1 day. At 30 days, ipsilateral corona radiata showed decreased FA. Pigs with TBI also had increase in GFAP and NFL at 1-5 days after injury. Significant difference between Sham and TBI animals continued up to 20 days. Linear regression showed significant negative correlation between ipsilateral corona radiata FA and both NFL and GFAP levels at 1 day. To further validate the degree of axonal injury found in DTI, ß-APP immunohistochemistry was performed on a perilesional tissue as well as corona radiata bilaterally. Variable degree of staining was found in ipsilateral corona radiata. Porcine model of TBI replicates the acute increase in plasma biomarkers seen in clinical TBI. Further, long term white matter injury is confirmed in the areas such as the splenium and corona radiata. However, future study stratifying severe and mild TBI, as well as comparison with other subtypes of TBI such as diffuse axonal injury, may be warranted.


Subject(s)
Brain Injuries, Traumatic , Diffusion Tensor Imaging , Animals , Biomarkers , Brain Injuries, Traumatic/diagnostic imaging , Diffusion Tensor Imaging/methods , Glial Fibrillary Acidic Protein , Intermediate Filaments , Swine
7.
Clin Toxicol (Phila) ; 59(9): 801-809, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33529085

ABSTRACT

OBJECTIVES: The purpose of this study is the development of a porcine model of carbon monoxide (CO) poisoning to investigate alterations in brain and heart mitochondrial function. DESIGN: Two group large animal model of CO poisoning. SETTING: Laboratory. SUBJECTS: Ten swine were divided into two groups: Control (n = 4) and CO (n = 6). INTERVENTIONS: Administration of a low dose of CO at 200 ppm to the CO group over 90 min followed by 30 min of re-oxygenation at room air. The Control group received room air for 120 min. MEASUREMENTS: Non-invasive optical monitoring was used to measure cerebral blood flow and oxygenation. Cerebral microdialysis was performed to obtain semi real time measurements of cerebral metabolic status. At the end of the exposure, both fresh brain (cortical and hippocampal tissue) and heart (apical tissue) were immediately harvested to measure mitochondrial respiration and reactive oxygen species (ROS) generation and blood was collected to assess plasma cytokine concentrations. MAIN RESULTS: Animals in the CO group showed significantly decreased Complex IV-linked mitochondrial respiration in hippocampal and apical heart tissue but not cortical tissue. There also was a significant increase in mitochondrial ROS generation across all measured tissue types. The CO group showed a significantly higher cerebral lactate-to-pyruvate ratio. Both IL-8 and TNFα were significantly increased in the CO group compared with the Control group obtained from plasma. While not significant there was a trend to an increase in optically measured cerebral blood flow and hemoglobin concentration in the CO group. CONCLUSIONS: Low-dose CO poisoning is associated with early mitochondrial disruption prior to an observable phenotype highlighting the important role of mitochondrial function in the pathology of CO poisoning. This may represent an important intervenable pathway for therapy and intervention.


Subject(s)
Carbon Monoxide Poisoning/physiopathology , Cerebrovascular Circulation/physiology , Cerebrum/blood supply , Cerebrum/metabolism , Cerebrum/physiopathology , Heart/physiopathology , Mitochondria/metabolism , Animals , Cell Respiration/physiology , Disease Models, Animal , Heart Function Tests , Humans , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...