Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37687587

ABSTRACT

Dispersion-hardened materials based on TiC-AlnCn are alloys with high heat resistance, strength, and durability that can be used in aircraft and rocket technology as a hard lubricant. The titanium-rich composites of the Ti-Al-C system were synthesized via the spark plasma sintering process. Composite powder with 85% of Ti, 15% of Al, and MAX-phases was processed using high-voltage electrical discharge in kerosene at a specific energy of 25 MJ kg-1 to obtain nanosized particles. This method allows us to analyze the most efficient, energy saving, and less waste-generating technological processes producing materials with improved mechanical and physical properties. An Innova test indentation machine was used to determine the hardness of the synthesized composites. The microhardness of Ti-Al-C system samples was determined as approximately 500-600 HV. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were performed to identify the hard titanium matrix reinforced by intermetallic phases and the clusters of carbides. Three types of reinforcing phases were detected existing in the composites-TiC, Al4C3, and Al3Ti, as well as a matrix consisting of α- and ß-titanium. The lattice parameters of all phases detected in the composites were calculated using Rietveld analysis. It was determined that by increasing the temperature of sintering, the amount of aluminum and carbon increases in the carbides and intermetallic phases, while the amount of titanium decreases.

2.
Materials (Basel) ; 17(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38203969

ABSTRACT

Titanium-based composite materials arouse interest in fields like aerospace, transportation, medicine, and other applications. This research project presents the analysis of phase composition of sintered Ti-Al-C composite materials under high voltage electrical discharge. The new technology, described in the previous work of the authors, allows to synthesise the composites containing various intermetallics, carbides, and nanostructures. The samples of Ti-Al-C powder composites were tested by SEM, Raman spectroscopy, and XRD. It was determined that the treatment of the powder by high voltage electrical discharge (HVED) and further sintering at high temperatures using the spark plasma sintering (SPS) method encouraged the formation of the intermetallic reinforcing phases, carbides, and different nanocarbon structures like graphene and fullerenes, as well as pure graphite. Intermetallic phases and nanocarbon structures improved the mechanical and physical properties of the composites. By using the experimental methods mentioned above, the phase composition of Ti-Al-C powder composites obtained at different sintering temperatures was determined. It was revealed that new composite materials produced by HVED and further SPS were rich with carbides, intermetallics, and MAX phases. Therefore, the carbon nanostructures (graphene and graphite) were detected existing in the structure of the produced new Ti-Al-C composite material. All these reinforcing particles improved the microstructure and the mechanical properties of the composites, as was proved in the previous research by the authors and by the different scientific resources. This project is a pilot experimental work, therefore not all peaks of Raman and XRD were detected; they will be analysed in future works.

3.
Sensors (Basel) ; 21(1)2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33401731

ABSTRACT

This paper focuses on the investigation of the diagnostic system for health monitoring and defects, detecting in composite structures using a piezoelectric sensor. A major overview of structural defects in composite materials that have an influence on product performance as well as material strength is presented. Particularly, the proposed diagnostic (health monitoring) system enables to monitor the composite material plate defects during the exploitation in real-time. The investigated health monitoring system can indicate the material structure defects when the periodic test input signal is provided to excite the plate. Especially, the diagnostic system is useful when the defect placement is hard to be identified. In this work, several various numerical and experimental studies were carried out. Particularly, during the first study, the piezoelectric transducer was used to produce mechanical excitation to the composite plate when the impact response is measured with another piezoelectric sensor. The second study focuses on the defect identification algorithms of the raw hologram data consisting of the recorded oscillation modes of the affected composite plate. The main paper results obtained in both studies enable us to determine whether the composite material is characterized by mechanical defects occurring during the response to the periodic excitation. In case of damage, the observed response amplitude was decreased by 70%. Finally, using the time-domain experimental results, the frequency response functions (FRFs) are applied to damage detection assessment and to obtain extra damage information.

4.
Acta Bioeng Biomech ; 16(3): 135-43, 2014.
Article in English | MEDLINE | ID: mdl-25307700

ABSTRACT

A multifunctional device to transfer graphical or text information for blind or visually impaired is presented. The prototype using tactile perception has been designed where information displayed on the screen of electronic device (mobile phone, PC) is transferred by oscillating needle, touching the fingertip. Having the aim to define optimal parameters of the fingertip excitation by needle, the computational analysis of different excitation modes has been carried out. A 3D solid computational finite element model of the skin segment, comprising four main fingertip skin layers (stratum corneum, epidermis, dermis and hypodermis) was built by using ANSYS Workbench FEA software. Harmonic analysis of its stress-strain state under excitation with different frequency (up to 10000 Hz) and harmonic force (0.01 N), acting outer stratum corneum layer in normal direction at one, two or three points has been performed. The influence of the mode of dynamic loading of skin was evaluated (in terms of the tactile signal level) on the basis of the normal and shear elastic strain in dermis, where mechanoreceptors are placed. It is shown that the tactile perception of information, delivered by three vibrating pins, may be influenced by configuration of excitation points (their number and phase of loading) and the frequency of excitation.


Subject(s)
Communication Aids for Disabled , Micro-Electrical-Mechanical Systems/instrumentation , Touch , User-Computer Interface , Word Processing/instrumentation , Compressive Strength , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Humans , Pressure , Stress, Mechanical , Tensile Strength , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...