Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters











Publication year range
1.
PLoS One ; 17(9): e0272806, 2022.
Article in English | MEDLINE | ID: mdl-36054112

ABSTRACT

Surface waters, especially those receiving wastewater flows, can disseminate antimicrobial resistant bacteria (ARB), antimicrobial resistance genes (ARG), and antibiotics. In the Scioto River of central Ohio, United States, we evaluated fishes as potential sentinels of ARB and antimicrobial contamination and investigated the influence of antimicrobial exposure on the fish intestinal resistome. Seventy-seven fish were collected from river reaches receiving inputs from two wastewater treatment plants that serve the greater Columbus Metropolitan Area. Fish were screened for the presence of cephalosporin-resistant (CeRO) and carbapenem-resistant (CRO) organisms, epidemic carbapenemase genes, and antibiotic drugs and metabolites using culture methods, droplet digital PCR, and ultra-high performance liquid chromatography tandem mass spectroscopy (UHPLC-MS/MS). Nearly 21% of fish harbored a CeRO in their resistome, with 19.4% exhibiting bacteria expressing an AmpC genotype encoded by blaCMY, and 7.7% with bacteria expressing an extended-spectrum ß-lactamase phenotype encoded by blaCTX-M. blaKPC and blaNDM were present in 87.7% (57/65) and 80.4% (37/46) of the intestinal samples at an average abundance of 104 copies. Three antibiotics-lincomycin (19.5%), azithromycin (31.2%) and sulfamethoxazole (3.9%)-were found in hepatic samples at average concentrations between 25-31 ng/g. Fish harboring blaCTX-M and those exposed to azithromycin were at greater odds of being downstream of a wastewater treatment plant. Fish that bioconcentrated antibiotics in their liver were not at greater odds of harboring CeRO, CRO, or epidemic carbapenemase gene copies in their resistome. Our findings confirm that fishes can be effective bioindicators of surface waters contaminated with ARB, ARG, and antibiotics. Moreover, our findings highlight the varying importance of different mechanisms that facilitate establishment of ARB in aquatic ecosystems.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Azithromycin/pharmacology , Bacteria/genetics , Bacterial Proteins , Cephalosporins/pharmacology , Ecosystem , Fishes/genetics , Tandem Mass Spectrometry , Wastewater/microbiology , Water/pharmacology , beta-Lactamases/genetics , beta-Lactamases/pharmacology
2.
Conserv Physiol ; 9(1): coab084, 2021.
Article in English | MEDLINE | ID: mdl-34712488

ABSTRACT

Aerial insectivorous bird populations have declined precipitously in both North America and Europe. We assessed the effects of insect prey availability, climate and shifts in water quality associated with urbanization on haematocrit, haemoglobin concentration and heterophil-lymphocyte (H/L) ratios among ~13-day-old tree swallow (Tachycineta bicolor) nestlings in the Columbus, Ohio area. Higher mean temperature and increased frequency of extreme heat days during the early breeding period (May-June) were linked to reduced nestling physiological condition as evidenced by lower concentrations of haemoglobin and haematocrit, potentially due to increased heat stress, shifts in insect prey availability or altered parental provisioning efforts. Urbanization and the size and density of emergent aquatic insects were associated with elevated physiological stress, whereas higher mean temperatures and terrestrial insect size were related to lower stress as measured by H/L ratios. Overall, these findings highlight the complex environmental conditions driving nestling health, which may be indicative of post-fledging survival and, consequently, population growth. Our results underscore the need for conservation approaches that adequately address the interrelated effects of changes in climate, land use and food resources on aerial insectivorous birds.

3.
PLoS One ; 15(6): e0234303, 2020.
Article in English | MEDLINE | ID: mdl-32542035

ABSTRACT

Despite a developing literature on urban streams, few studies have addressed the timing and mechanisms of urban-induced stream hydrogeomorphic adjustment on biotic assemblages. Here, we investigated the relationships between urbanization-driven annual changes in fluvial geomorphic characteristics and fish assemblages in 12 headwater streams in the Columbus Metropolitan Area (CMA), Ohio (USA) over 3-5 years. Multiple stream hydrogeomorphic characteristics changed over time including slope (0.1% decrease on average), discharge (39% decrease), and shear stress (29% decrease), some in concert with one another (e.g., slope and shear stress). Species-specific fish associations with hydrogeomorphic associations varied in nature and strength by year and thus were somewhat equivocal. At the assemblage level, we observed a negative relationship between D50 (median sediment particle size) and % tolerant individuals as well as a positive trend between incision ratio and % generalists over study years. Study reaches with higher total catchment imperviousness were associated with both finer median sediment size (R2 = 0.19) and lower assemblage diversity (R2 = 0.55). These results contribute to current understanding of the drivers of fish assemblages in urbanizing catchments, and point to urban-induced hydrogeomorphic alterations as one mechanism through which land-use changes influence in-channel characteristics important to aquatic biota.


Subject(s)
Ecological and Environmental Phenomena , Fishes , Rivers , Urbanization , Animals , Ohio , Water Quality
4.
J Environ Manage ; 265: 110529, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32421557

ABSTRACT

Wastewater flows from metropolitan areas, especially those with healthcare inputs, can serve as transport reservoirs for the dissemination of clinically-relevant antimicrobial resistant bacteria (ARB) such as carbapenem- (CR) and colistin-resistant (CoR) strains. Pulsed electric field (PEF) is an emerging wastewater management tool for reducing bacterial loads without generating environmentally harmful byproducts, but it's ability to reduce ARB and their genetic determinants is not well reported. We collected 86, 10-L raw wastewater influent samples from a large metropolitan wastewater treatment plant in Columbus, Ohio and subjected them to low (34 kV cm-1 for 67 µsec) and high (36 kV cm-1 for 89 µsec) PEF treatment. We quantified the PEF effectiveness by measuring concentrations of total coliform bacteria, CR and CoR bacteria, and the epidemic carbapenemase gene, blaKPC, before and after PEF treatment. Utilizing marginal linear regression models with generalized estimating equations, we observed that low and high PEF treatment resulted in a 1.94 (95% CI 2.06-1.81; P < 0.001) and 2.32 (95% CI 2.46-2.18; P < 0.001) log reduction of total coliform bacteria concentrations, respectively. Low and high PEF treatment produced similar log reductions between CR E. coli (2.01 (95% CI 2.15-1.86; P < 0.001); 2.14 (95% CI: 5.30-4.61; P < 0.001)) and CR Enterobacteriaceae concentrations (1.55 (95% CI 1.70-1.41; P < 0.001); 1.86 (95% CI 2.05-1.68; P < 0.001)), and resulted in a 1.15 log (95% CI 1.38-0.93, P < 0.001) and 1.28 log (95% CI 1.54-1.03, P < 0.001) reduction of absolute blaKPC concentrations. Log CoR E. coli concentrations were reduced by 2.47 (95% CI 2.78-2.15; P < 0.001) and 2.52 (95% CI 2.91-2.15; P < 0.001) and CoR Enterobacteriaceae by 2.24 (95% CI 2.52-1.95; P < 0.001) and 2.50 (95% CI 2.89-2.11; P < 0.001) following low and high PEF application. PEF can be applied for wastewater management as an independent treatment method, particularly at critical control points, such as an on-site management of wastewater from hospitals or other healthcare facilities, or in series with other conventional methods to reduce total bacterial loads and concentrations of clinically-relevant ARB.


Subject(s)
Colistin , Microbiota , Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Escherichia coli , Ohio , Wastewater , beta-Lactamases
6.
Ecol Appl ; 29(1): e01821, 2019 01.
Article in English | MEDLINE | ID: mdl-30566269

ABSTRACT

Artificial lighting at night (ALAN) is a global phenomenon that can be detrimental to organisms at individual and population levels, yet potential consequences for communities and ecosystem functions are less resolved. Riparian systems may be particularly vulnerable to ALAN. We investigated the impacts of ALAN on invertebrate community composition and food web characteristics for linked aquatic-terrestrial ecosystems. We focused on food chain length (FCL), a central property of ecological communities that can influence their structure, function, and stability; and the contribution of aquatically derived energy (i.e., nutritional subsidies originating from stream periphyton). We collected terrestrial arthropods and emergent aquatic insects from a suite of stream and wetland sites in Columbus, Ohio, USA. Stable isotopes of carbon (13 C) and nitrogen (15 N) were used to infer FCL and contribution of aquatically derived energy. We found that moderate-to-high levels of ALAN altered invertebrate community composition, favoring primarily predators and detritivores. Impacts of ALAN, however, were very taxon specific as illustrated, for example, by the negative impact of ALAN on the abundance of orb-web spiders belonging to the families Tetragnathidae and Araneidae: key invertebrate riparian predators. Most notably, we observed decreases in both invertebrate FCL and reliance on aquatically derived energy under ALAN (although aquatic energetic contributions appeared to increase again at higher levels of ALAN), in addition to shifts in the timing of reciprocal nutritional subsidies. Our study demonstrates that ALAN can alter the flows of energy between aquatic and terrestrial systems, thereby representing an environmental perturbation that can cross ecosystem boundaries. Given projections for global increases in ALAN, both in terms of coverage and intensity, these results have broad implications for stream ecosystem structure and function.


Subject(s)
Ecosystem , Food Chain , Animals , Invertebrates , Lighting , Ohio
7.
Environ Monit Assess ; 190(6): 339, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29748723

ABSTRACT

Dam removal is an increasingly common river restoration option, yet some of the mechanisms leading to ecological changes remain unquantified. We assessed relationships between riffle structure and benthic macroinvertebrate and fish assemblages 2 years after a lowhead dam removal in Ohio, USA. Hydrogeomorphic, water-chemistry, and biotic surveys were conducted at seven study riffles at six time intervals from spring 2014 through summer 2015. The density and diversity of macroinvertebrates and fish were significantly different over time, largely as a function of season (lowest densities in early spring, greatest in summer). Macroinvertebrate, but not fish, assemblage composition was different by time but not riffle. Although hydrogeomorphic characteristics (e.g., streamflow velocity, substrate size) were linked to shifts in macroinvertebrates and fish, chemical water-quality parameters (e.g., dissolved oxygen, nutrient concentrations) were also implicated as potential biotic drivers. Our results indicate that riffle habitat development can be an important mechanism related to restoring sensitive species and biological diversity following dam removal.


Subject(s)
Aquatic Organisms/classification , Biota , Environmental Monitoring/methods , Fishes/classification , Invertebrates/classification , Rivers , Animals , Aquatic Organisms/isolation & purification , Biodiversity , Ecosystem , Geologic Sediments/analysis , Ohio , Seasons , Water Quality
8.
Environ Pollut ; 231(Pt 1): 671-680, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28850935

ABSTRACT

Recent increases in dam removals have prompted research on ecological and geomorphic river responses, yet contaminant dynamics following dam removals are poorly understood. We investigated changes in sediment concentrations and fish-community body burdens of mercury (Hg), selenium (Se), polychlorinated biphenyls (PCB), and chlorinated pesticides before and after two lowhead dam removals in the Scioto and Olentangy Rivers (Columbus, Ohio). These changes were then related to documented shifts in fish food-web structure. Seven study reaches were surveyed from 2011 to 2015, including controls, upstream and downstream of the previous dams, and upstream restored vs. unrestored. For most contaminants, fish-community body burdens declined following dam removal and converged across study reaches by the last year of the study in both rivers. Aldrin and dieldrin body burdens in the Olentangy River declined more rapidly in the upstream-restored vs. the upstream-unrestored reach, but were indistinguishable by year three post dam removal. No upstream-downstream differences were observed in body burdens in the Olentangy River, but aldrin and dieldrin body burdens were 138 and 148% higher, respectively, in downstream reaches than in upstream reaches of the Scioto River following dam removal. The strongest relationships between trophic position and body burdens were observed with PCBs and Se in the Scioto River, and with dieldrin in the Olentangy River. Food-chain length - a key measure of trophic structure - was only weakly related to aldrin body burdens, and unrelated to other contaminants. Overall, we demonstrate that lowhead dam removal may effectively reduce ecosystem contamination, largely via shifts in fish food-web dynamics versus sediment contaminant concentrations. This study presents some of the first findings documenting ecosystem contamination following dam removal and will be useful in informing future dam removals.


Subject(s)
Environmental Monitoring , Fishes/physiology , Food Chain , Water Pollutants, Chemical/analysis , Animals , Ecosystem , Environmental Pollution , Mercury/analysis , Ohio , Pesticides , Polychlorinated Biphenyls/analysis , Power Plants , Rivers/chemistry
9.
PeerJ ; 5: e3189, 2017.
Article in English | MEDLINE | ID: mdl-28396827

ABSTRACT

Dam removal is an increasingly popular restoration tool, but our understanding of ecological responses to dam removal over time is still in the early stages. We quantified seasonal benthic macroinvertebrate density, taxonomic composition, and functional traits for three years after lowhead dam removal in three reaches of the Olentangy River (Ohio, USA): two upstream of former dam (one restored, one unrestored), and one downstream of former dam. Macroinvertebrate community density, generic richness, and Shannon-Wiener diversity decreased between ∼9 and ∼15 months after dam removal; all three variables consistently increased thereafter. These threshold responses were dependent on reach location: density and richness increased ∼15 months after removal in upstream reaches versus ∼19 months downstream of the former dam. Initial macroinvertebrate density declines were likely related to seasonality or life-history characteristics, but density increased up to 2.27נfrom year to year in three out of four seasons (late autumn, early spring, summer) across all reaches. Macroinvertebrate community composition was similar among the three reaches, but differed seasonally based on non-metric multidimensional scaling (NMDS) and analysis of similarity (ANOSIM). Seasonal differences among communities tended to decrease after dam removal. We detected community-wide shifts in functional traits such as multivoltinism, depositional habitat use, burrowing, and collector-gatherer feeding mode. We observed that these traits were expressed most strongly with Chironomidae, which was the most abundant family. Our results suggest that seasonal environmental conditions can play a role in the response and recovery of macroinvertebrate communities-often used to monitor ecosystem condition-following dam removal. In particular, macroinvertebrate density and diversity can show recovery after dam removal, especially in seasons when macroinvertebrate density is typically lowest, with concomitant changes to functional trait abundance. Thus, we recommend scientists and managers consider responses to dam removal throughout the year. Further, similar density, generic richness, and functional traits among reaches suggest that channel restoration after dam removal may initially have equivocal effects on invertebrate communities.

10.
Environ Pollut ; 213: 53-62, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26874875

ABSTRACT

Emerging aquatic insects are important vectors of contaminant transfer from aquatic to terrestrial food webs. However, the environmental factors that regulate contaminant body burdens in nearshore terrestrial consumers remain largely unexplored. We investigated the relative influences of riparian landscape composition (i.e., land use and nearshore vegetation structure) and contaminant flux via the emergent aquatic insect subsidy on selenium (Se) and mercury (Hg) body burdens of riparian ants (Formica subsericea) and spiders of the family Tetragnathidae along 11 river reaches spanning an urban-rural land-use gradient in Ohio, USA. Model-selection results indicated that fine-scale land cover (e.g., riparian zone width, shrub cover) in the riparian zone was positively associated with reach-wide body burdens of Se and Hg in both riparian F. subsericea and tetragnathid spiders (i.e., total magnitude of Hg and Se concentrations in ant and spider populations, respectively, for each reach). River distance downstream of Columbus, Ohio - where study reaches were impounded and flow through a large urban center - was also implicated as an important factor. Although stable-isotope analysis suggested that emergent aquatic insects were likely vectors of Se and Hg to tetragnathid spiders (but not to F. subsericea), emergent insect contaminant flux did not emerge as a significant predictor for either reach-wide body burdens of spider Hg or Se. Improved understanding of the pathways and influences that control aquatic-to-terrestrial contaminant transport will be critical for effective risk management and remediation.


Subject(s)
Ants/chemistry , Mercury/analysis , Rivers/chemistry , Selenium/analysis , Spiders/chemistry , Animals , Food Chain , Geologic Sediments/chemistry , Ohio , Soil Pollutants/chemistry , Water Pollution
11.
Environ Monit Assess ; 188(2): 109, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26797815

ABSTRACT

Further resolving physicochemical-fish associations would be of considerable benefit to advancing both scientific research and monitoring programs in the Baltic states. We collected 3 years of coordinated hydrogeomorphic, water-chemistry, and fish assemblage data at 11 study reaches along the Nevezis River of central Lithuania and assessed their relative influence on fish assemblages. Of the 23 fish species surveyed in the Nevezis River, omnivorous and tolerant species were most common. Both water chemistry and physical, hydrogeomorphic characteristics emerged as predictors of fish assemblage descriptors. The strength of evidence for biological oyxgen demand as a strong environmental driver was compelling for both the Lithuanian Fish Index (LFI) and percentage of simple lithophils. Channel substrate emerged in multiple models as a strong predictor variable (LFI, % intolerant species, % simple lithophils, % omnivores). Measures of channel size (drainage area, mean depth) contributed to models for multiple fish metrics including percentage of lithophils, percentage of omnivores, and percentage of intolerant species. This research represents novel work in the region, and our results are an important step in supporting the development of a comprehensive physicochemical research and monitoring program in Lithuania.


Subject(s)
Conservation of Natural Resources/methods , Environmental Monitoring/methods , Fishes/classification , Rivers/chemistry , Animals , Baltic States , Lithuania , Water Quality
12.
PLoS One ; 10(4): e0124807, 2015.
Article in English | MEDLINE | ID: mdl-25894540

ABSTRACT

Although the principles of landscape ecology are increasingly extended to include riverine landscapes, explicit applications are few. We investigated associations between patch heterogeneity and riparian ant assemblages at 12 riverine landscapes of the Scioto River, Ohio, USA, that represent urban/developed, agricultural, and mixed (primarily forested, but also wetland, grassland/fallow, and exurban) land-use settings. Using remotely-sensed and ground-collected data, we delineated riverine landscape patch types (crop, grass/herbaceous, gravel, lawn, mudflat, open water, shrub, swamp, and woody vegetation), computed patch metrics (area, density, edge, richness, and shape), and conducted coordinated sampling of surface-active Formicidae assemblages. Ant density and species richness was lower in agricultural riverine landscapes than at mixed or developed reaches (measured using S [total number of species], but not using Menhinick's Index [DM]), whereas ant diversity (using the Berger-Park Index [DBP]) was highest in agricultural reaches. We found no differences in ant density, richness, or diversity among internal riverine landscape patches. However, certain characteristics of patches influenced ant communities. Patch shape and density were significant predictors of richness (S: R2 = 0.72; DM: R2=0.57). Patch area, edge, and shape emerged as important predictors of DBP (R2 = 0.62) whereas patch area, edge, and density were strongly related to ant density (R2 = 0.65). Non-metric multidimensional scaling and analysis of similarities distinguished ant assemblage composition in grass and swamp patches from crop, gravel, lawn, and shrub as well as ant assemblages in woody vegetation patches from crop, lawn, and gravel (stress = 0.18, R2 = 0.64). These findings lend insight into the utility of landscape ecology to river science by providing evidence that spatial habitat patterns within riverine landscapes can influence assemblage characteristics of riparian arthropods.


Subject(s)
Ants/physiology , Biodiversity , Agriculture , Animals , Arthropods , Climate , Forests , Grassland , Models, Theoretical , Ohio , Plants , Poaceae , Rivers , Soil , Temperature
13.
Sci Total Environ ; 485-486: 461-467, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24742556

ABSTRACT

A prevalent environmental contaminant, mercury (Hg) is mobile and persistent in aquatic systems, where it often occurs in its bioavailable form methylmercury. Because methylmercury can bioaccumulate in aquatic insects and then transfer to terrestrial food webs, riparian consumers reliant upon aquatic emergent insects, should be disproportionately affected. Using the aerial insectivore Acadian flycatcher (Empidonax virescens) as a focal species, we examined (1) the extent to which total Hg loads in breeding flycatchers affected body condition and reproductive output and (2) potential pathways of contaminant flux in 19 riparian forest fragments distributed across an urban-to-rural landscape gradient in Ohio, USA. From April-August 2011-2012, we collected blood samples from adult (n=76) and nestling (n=17 from 7 nests) flycatchers, monitored their annual reproductive success (i.e., total number of fledglings), and sampled water, sediment, and aquatic emergent insects at each site. Hg concentrations in adult flycatcher blood (47 to 584 µg/kg, x¯=211.8, SD=95.5) were low relative to published advisory levels and not related to body condition. However, even at low concentrations, blood Hg was negatively related to reproductive success, with a 0.83 decline in the number of fledglings per µg/kg (loge) increase of blood Hg. Adult flycatchers had 11× greater concentrations of blood Hg than their offspring. Hg levels in flycatcher blood were not predicted by Hg concentrations in sediment, water, or aquatic emergent insects, with the exception of rural landscapes alone, in which flycatcher Hg was negatively related to sediment Hg. In addition to illustrating the difficulty of predicting exposure pathways that may vary among landscape contexts, our study provides evidence that even trace levels of contaminants may impair reproductive success of free-living songbirds.


Subject(s)
Environmental Monitoring , Environmental Pollutants/metabolism , Food Chain , Songbirds/metabolism , Urbanization/trends , Animals , Environmental Pollutants/analysis , Ohio
14.
Ecol Appl ; 23(6): 1322-30, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24147405

ABSTRACT

Cities produce considerable ecological light pollution (ELP), yet the effects of artificial night lighting on biological communities and ecosystem function have not been fully explored. From June 2010 to June 2011, we surveyed aquatic emergent insects, riparian arthropods entering the water, and riparian spiders of the family Tetragnathidae at nine stream reaches representing common ambient ELP levels of Columbus, Ohio, USA, streams (low, 0.1-0.5 lux; moderate, 0.6-2.0 lux; high, 2.1-4.0 lux). In August 2011, we experimentally increased light levels at the low- and moderate-treatment reaches to 10-12 lux to represent urban streams exposed to extremely high levels of ELP. Although season exerted the dominant influence on invertebrate fluxes over the course of the year, when analyzed by season, we found that light strongly influenced multiple invertebrate responses. The experimental light addition resulted in a 44% decrease in tetragnathid spider density (P = 0.035), decreases of 16% in family richness (P = 0.040) and 76% in mean body size (P = 0.022) of aquatic emergent insects, and a 309% increase in mean body size of terrestrial arthropods (P = 0.015). Our results provide evidence that artificial light sources can alter community structure and ecosystem function in streams via changes in reciprocal aquatic-terrestrial fluxes of invertebrates.


Subject(s)
Ecosystem , Environmental Pollutants , Invertebrates/physiology , Light , Rivers , Animals , Cities , Ohio , Population Dynamics
15.
Sci Total Environ ; 463-464: 42-50, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23792246

ABSTRACT

Recent research has highlighted the transfer of contaminants from aquatic to terrestrial ecosystems via predation of aquatic emergent insects by riparian consumers. The influence of adjacent land use and land cover (LULC) on aquatic-to-terrestrial contaminant transfer, however, has received limited attention. From 2010 to 2012, at 11 river reaches in the Scioto River basin (OH, USA), we investigated the relationships between LULC and selenium (Se) and mercury (Hg) concentrations in four species of riparian swallows. Hg concentrations in swallows were significantly higher at rural reaches than at urban reaches (t=-3.58, P<0.001, df=30), whereas Se concentrations were positively associated with adjacent land cover characterized by mature tree cover (R(2)=0.49, P=0.006). To an extent, these relationships appear to be mediated by swallow reliance on aquatic emergent insects. For example, tree swallows (Tachycineta bicolor) at urban reaches exhibited a higher proportion of aquatic prey in their diet, fed at a higher trophic level, and exhibited elevated Se levels. We also found that both Se and Hg concentrations in adult swallows were significantly higher than those observed in nestlings at both urban and rural reaches (Se: t=-2.83, P=0.033, df=3; Hg: t=-3.22, P=0.024, df=3). Collectively, our results indicate that riparian swallows integrate contaminant exposure in linked aquatic-terrestrial systems and that LULC may strongly regulate aquatic contaminant flux to terrestrial consumers.


Subject(s)
Mercury Compounds/blood , Rivers , Selenium Compounds/blood , Soil Pollutants/analysis , Swallows/blood , Water Pollutants, Chemical/analysis , Age Factors , Animals , Ecosystem , Environmental Monitoring , Insecta , Mercury Compounds/adverse effects , Mercury Compounds/analysis , Ohio , Selenium Compounds/adverse effects , Selenium Compounds/analysis , Soil Pollutants/adverse effects , Water Pollutants, Chemical/adverse effects
17.
Environ Manage ; 44(4): 789-99, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19506939

ABSTRACT

Stream-riparian ecosystems are dynamic and complex entities that can support high levels of bird assemblage abundance and diversity. The myriad patches (e.g., aquatic, floodplain, riparian) found in the riverscape habitat mosaic attract a unique mixture of aquatic, semiaquatic, riparian, and upland birds, each uniquely utilizing the river corridor. Whereas standard morning bird surveys are widely used across ecosystems, the variety of bird guilds and the temporal habitat partitioning that likely occur in stream-riparian ecosystems argue for the inclusion of evening surveys. At 41 stream reaches in Vermont and Idaho, USA, we surveyed bird assemblages using a combination of morning and evening fixed-width transect counts. Student's paired t-tests showed that while bird abundance was not significantly different between morning and evening surveys, bird assemblage diversity (as measured by species richness, Shannon-Weiner's index, and Simpson's index) was significantly higher in the morning than in the evening. NMS ordinations of bird species and time (i.e., morning, evening) indicated that the structure of morning bird assemblages was different from that of evening assemblages. NMS further showed that a set of species was only found in evening surveys. The inclusion of evening counts in surveying bird assemblages in stream-riparian ecosystems has important experimental and ecological implications. Experimentally, the sole use of morning bird surveys may significantly underestimate the diversity and misrepresent the community composition of bird assemblages in these ecosystems. Ecologically, many of the birds detected in evening surveys were water-associated species that occupy high trophic levels and aerial insectivores that represent unique aquatic-terrestrial energy transfers.


Subject(s)
Biodiversity , Birds , Ecosystem , Animals , Data Collection , Environmental Monitoring , Periodicity , Rivers , Trees
18.
Environ Manage ; 34(5): 669-83, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15633026

ABSTRACT

Scientists have long assumed that the physical structure and condition of stream and river channels have pervasive effects on biological communities and processes, but specific tests are few. To investigate the influence of the stream-reach geomorphic state on in-stream habitat and aquatic macroinvertebrate communities, we compared measures of habitat conditions and macroinvertebrate community composition between stable and unstable stream reaches in a paired-study design. We also explored potential associations between these ecological measures and individual geomorphic characteristics and channel adjustment processes (degradation, aggradation, overwidening, and change in planform). We found that habitat quality and heterogeneity were closely tied to stream stability, with geomorphically stable reaches supporting better habitat than unstable reaches. Geomorphic and habitat assessment scores were highly correlated (r = 0.624, P < 0.006, n = 18). Stable reaches did not support significantly greater macroinvertebrate densities than unstable reaches (t = -0.415, P > 0.689, df = 8). However, the percent of the macroinvertebrate community in the Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa was significantly correlated with the overall habitat assessment scores as well as with individual measures of geomorphic condition and habitat quality. While there is a clear need for more work in classifying and quantifying the responses of aquatic and aquatic-dependent biota to various geomorphic states and processes, this study provides solid preliminary evidence that macroinvertebrate communities are affected by the geomorphic condition of the stream reaches they inhabit and that geomorphic assessment approaches can be used as a tool for evaluating ecological integrity.


Subject(s)
Geology , Invertebrates/growth & development , Animals , Ecology , Environmental Monitoring , Geologic Sediments , Geological Phenomena , Population Dynamics , Rivers
19.
Postgrad Med J ; 77(908): 363-70, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11375448

ABSTRACT

Sudden cardiac death in the community remains a major public health problem. The purpose of this article is to outline the epidemiology, pathophysiology, and immediate treatment of the cardiac arrest victim. The subsequent in-hospital diagnostic evaluation and management will then be discussed with an emphasis on the role of the implantable cardioverter-defibrillator. A systematic and evidence based approach should help to optimize patient care.


Subject(s)
Death, Sudden, Cardiac/prevention & control , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/pathology , Defibrillators, Implantable , Heart Arrest/etiology , Heart Arrest/therapy , Humans , Myocardial Revascularization
20.
J Electrocardiol ; 34 Suppl: 143-8, 2001.
Article in English | MEDLINE | ID: mdl-11781948

ABSTRACT

We compared the response of endocardial lead systems to radiofrequency (RF) current delivered during atrio-ventricular junction ablation (AVJA) for atrial fibrillation with uncontrolled ventricular rate in 107 patients. The mean age was 67 +/- 11 years and the mean ejection fraction 42 +/- 15%. Patients were divided into 3 groups based on the type of ventricular lead present at the time of ablation: a previously implanted defibrillator lead (group 3, n = 13), a previously implanted pacemaker lead (group 2, n = 46) or a temporary lead (group 1, n = 48), which was subsequently followed by a permanent lead implantation. During AVJA, a median of 5 RF applications (44 +/- 8 W) were given via 4-5-mm electrodes. All but 1 patient had right-sided lesions, while 6 patients also had left sided lesions. Ventricular pacing thresholds were evaluated immediately pre- and post-ablation at 24 hours and at 1 to 3 months. Increases in ventricular pacing voltage thresholds were noted in all 3 groups over time, with the greatest mean increase in group 3 patients: [table: see text]. A greater than 2-fold increase in pacing thresholds was observed only with previously implanted leads, usually within the first 48 hours. It occurred significantly more often in patients with group 3 (6/13 [46%]) compared to group 2 (6/46 [13%], odds ratio 7.6, P = 0.006). A progressive rise in pacing threshold required lead revision in 2/13 group 3 patients (15%) and 2/46 group 2 patients (4%). While RF current has only minor effects on pacing threshold in most patients with previously implanted ventricular lead systems, clinically important alterations requiring device reprogramming or lead revision may occur. Group 3 are significantly more vulnerable to RF current, though the mechanisms are unclear. Group 1 during AVJA, followed by permanent lead implantation appears advisable. Pts with a previously implanted group 3 who require AVJA should be monitored closely.


Subject(s)
Atrial Fibrillation/surgery , Catheter Ablation , Defibrillators, Implantable , Pacemaker, Artificial , Aged , Atrioventricular Node/surgery , Cardiac Pacing, Artificial , Case-Control Studies , Electrodes, Implanted , Humans , Radiation , Retrospective Studies , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL