Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 124(2): 307-318, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31218361

ABSTRACT

BACKGROUND AND AIMS: Phenotypic plasticity and local adaption can contribute to the success of invasive species. While the former is an environmentally induced trait, the latter involves a selection process to filter the best genotype for a location. We examined the evidence for phenotypic plasticity and local adaptation for seed and seedling traits of the invasive tree Gleditsia triacanthos, with three origins distributed along an approx. 10° latitude gradient across three biomes. METHODS: In sub-tropical forests, dry woodlands and secondary temperate grasslands in Argentina, we harvested seeds from clusters of neighbouring trees (i.e. families) distributed within 15-20 km in each origin (biome). We manipulated the environmental conditions relevant to each biome, assuming that propagule availability did not represent an ecological barrier. In growth chambers, we evaluated seed imbibition and seed germination under different light, temperature and water potential. In a 2 year common garden, we evaluated the impact of resident vegetation removal on seedling survival and growth. KEY RESULTS: Mean time to complete seed imbibition differed among origins; seeds from temperate grasslands reached full imbibition before seeds from dry woodlands and sub-tropical forests. Germination was always >70 %, but was differentially affected by water potential, and light quantity (dark-light) and quality (red-far red) among origins, suggesting local adaptation. In the common garden, vegetation removal rather than origin negatively affected seedling survival and enhanced seedling growth. Vegetation removal increased basal diameter, leaves per plant and spine number, and reduced the height:basal diameter ratio. CONCLUSIONS: We conclude that local adaptation in seed germination traits and plastic changes in seedling allometry (e.g. height:diameter) may allow this tree to respond over the short and long term to changes in environmental conditions, and to contribute to shape G. triacanthos as a successful woody invader. Overall, our study revealed how local adaptation and plasticity can explain different aspects of tree invasion capacity across biomes.


Subject(s)
Gleditsia , Trees , Argentina , Ecosystem , Germination , Seedlings , Seeds
2.
Oecologia ; 128(4): 594-602, 2001 Aug.
Article in English | MEDLINE | ID: mdl-28547405

ABSTRACT

Factors limiting tree invasion in the Inland Pampas of Argentina were studied by monitoring the establishment of four alien tree species in remnant grassland and cultivated forest stands. We tested whether disturbances facilitated tree seedling recruitment and survival once seeds of invaders were made available by hand sowing. Seed addition to grassland failed to produce seedlings of two study species, Ligustrum lucidum and Ulmus pumila, but did result in abundant recruitment of Gleditsia triacanthos and Prosopis caldenia. While emergence was sparse in intact grassland, seedling densities were significantly increased by canopy and soil disturbances. Longer-term surveys showed that only Gleditsia became successfully established in disturbed grassland. These results support the hypothesis that interference from herbaceous vegetation may play a significant role in slowing down tree invasion, whereas disturbances create microsites that can be exploited by invasive woody plants. Seed sowing in a Ligustrum forest promoted the emergence of all four study species in understorey and treefall gap conditions. Litter removal had species-specific effects on emergence and early seedling growth, but had little impact on survivorship. Seedlings emerging under the closed forest canopy died within a few months. In the treefall gap, recruits of Gleditsia and Prosopis survived the first year, but did not survive in the longer term after natural gap closure. The forest community thus appeared less susceptible to colonization by alien trees than the grassland. We conclude that tree invasion in this system is strongly limited by the availability of recruitment microsites and biotic interactions, as well as by dispersal from existing propagule sources.

SELECTION OF CITATIONS
SEARCH DETAIL
...