Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Biomech (Bristol, Avon) ; 111: 106153, 2024 01.
Article in English | MEDLINE | ID: mdl-38061204

ABSTRACT

BACKGROUND: Breast-conserving surgery is the most acceptable operation for breast cancer removal from an invasive and psychological point of view. Before the surgical procedure, a preoperative MRI is performed in the prone configuration, while the surgery is achieved in the supine position. This leads to a considerable movement of the breast, including the tumor, between the two poses, complicating the surgeon's task. METHODS: In this work, a simulation pipeline allowing the computation of patient-specific geometry and the prediction of personalized breast material properties was put forward. Through image segmentation, a finite element model including the subject-specific geometry is established. By first computing an undeformed state of the breast, the geometrico-material model is calibrated by surface acquisition in the intra-operative stance. FINDINGS: Using an elastic corotational formulation, the patient-specific mechanical properties of the breast and skin were identified to obtain the best estimates of the supine configuration. The final results are a shape-fitting closest point residual of 4.00 mm for the mechanical parameters Ebreast=0.32 kPa and Eskin=22.72 kPa, congruent with the current state-of-the-art. The Covariance Matrix Adaptation Evolution Strategy optimizer converges on average between 5 to 30 min depending on the initial parameters, reaching a simulation speed of 20 s. To our knowledge, our model offers one of the best compromises between accuracy and speed. INTERPRETATION: Satisfactory results were obtained for the estimation of breast deformation from preoperative to intra-operative configuration. Furthermore, we have demonstrated the clinical feasibility of such applications using a simulation framework that aims at the smallest disturbance of the actual surgical pipeline.


Subject(s)
Breast Neoplasms , Breast , Humans , Female , Breast/diagnostic imaging , Breast/surgery , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Computer Simulation , Magnetic Resonance Imaging/methods , Finite Element Analysis
2.
J Biomech ; 128: 110645, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34500364

ABSTRACT

In breast surgical practice, drawing is part of the preoperative planning procedure and is essential for a successful operation. In this study, we design a pipeline to assist surgeons with patient-specific breast surgical drawings. We use a deformable torso model containing the surgical patterns to match any breast surface scan. To be compatible with surgical timing, we build an articulated model through a skinning process coupled with shape deformers to enhance a fast registration process. On one hand, the scalable bones of the skinning account for pose and morphological variations of the patients. On the other hand, pre-designed artistic blendshapes create a linear space for guaranteeing anatomical variations. Then, we apply meaningful constraints to the model to find a trade-off between precision and speed. The experiments were conducted on 7 patients, in 2 different poses (prone and supine) with a breast size ranging from 36A and 42C (US/UK bra sizing). The acquisitions were obtained using the depth camera Structure Sensor, and the breast scans were acquired in less than 1 minute. The result is a registration method converging within a few seconds (3 maximum), reaching a Mean Absolute Error of 2.3 mm for mesh registration and 8.0 mm for breast anatomical landmarks. Compared to the existing literature, our model can be personalized and does not require any database. Finally, our registered model can be used to transfer surgical reference patterns onto any patient in any position.


Subject(s)
Breast , Torso , Breast/diagnostic imaging , Breast/surgery , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...