Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 2331, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281983

ABSTRACT

Sb is a three-dimensional Peierls insulator. The Peierls instability gives rise to doubling of the translational period along the [111] direction and alternating van der Waals and covalent bonding between (111) atomic planes. At the (111) surface of Sb, the Peierls condition is violated, which in theory can give rise to properties differing from the bulk. The atomic and electronic structure of the (111) surface of Sb have been simulated by density functional theory calculations. We have considered the two possible (111) surfaces, containing van der Waals dangling bonds or containing covalent dangling bonds. In the models, the surfaces are infinite and the structure is defect free. Structural optimization of the model containing covalent dangling bonds results in strong deformation, which is well described by a topological soliton within the Su-Schrieffer-Heeger model centered about 25 Å below the surface. The electronic states associated with the soliton see an increase in the density of states (DOS) at the Fermi level by around an order of magnitude at the soliton center. Scanning tunneling microscopy and spectroscopy (STM/STS) measurements reveal two distinct surface regions, indicating that there are different surface regions cleaving van der Waals and covalent bonds. The DFT is in good agreement with the STM/STS experiments.

2.
Nanomaterials (Basel) ; 12(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36432319

ABSTRACT

The aim of the study is to investigate the influence of the solvents applied both in sol-gel process and for supercritical drying (SCD) on NiO aerogels' properties. NiO aerogels were synthesized using methanol and 2-methoxy-ethanol (MeGl) as sol solvents. SCD was performed using iso-propanol, methanol and tert-butyl-methyl ether as supercritical fluids. The obtained samples were characterized using low-temperature nitrogen adsorption, X-ray diffraction analysis, mass-spectra analysis and STEM and TEM methods. It was found that specific surface area and the phase and chemical composition strongly depend on the synthesis conditions. We revealed that Ni2+ cations were reduced into Ni0 when 2-methoxy-ethanol was applied as a sol solvent. The mechanism of the Ni2+ cations reduction is proposed. We consider that at the stage of sol preparation, the Ni2+-MeGl chelate was formed. This chelate decomposes at the SCD stage with the release of MeGl, which, in turn, eliminates methanol and leads to the formation of aldehyde. The latter is responsible for the nickel reduction. The proposed mechanism was confirmed experimentally.

3.
Materials (Basel) ; 15(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36363246

ABSTRACT

The strongly correlated electron material, vanadium dioxide (VO2), has seen considerable attention and research application in metal-oxide electronics due to its metal-to-insulator transition close to room temperature. Vacuum annealing a V2O5(010) single crystal results in Wadsley phases (VnO2n+1, n > 1) and VO2. The resistance changes by a factor of 20 at 342 K, corresponding to the metal-to-insulator phase transition of VO2. Macroscopic voltage-current measurements with a probe separation on the millimetre scale result in Joule heating-induced resistive switching at extremely low voltages of under a volt. This can reduce the hysteresis and facilitate low temperature operation of VO2 devices, of potential benefit for switching speed and device stability. This is correlated to the low resistance of the system at temperatures below the transition. High-resolution transmission electron microscopy measurements reveal a complex structural relationship between V2O5, VO2 and V6O13 crystallites. Percolation paths incorporating both VO2 and metallic V6O13 are revealed, which can reduce the resistance below the transition and result in exceptionally low voltage resistive switching.

5.
Sci Rep ; 5: 8871, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-25747456

ABSTRACT

Diamagnetic oxides can, under certain conditions, become ferromagnetic at room temperature and therefore are promising candidates for future material in spintronic devices. Contrary to early predictions, doping ZnO with uniformly distributed magnetic ions is not essential to obtain ferromagnetic samples. Instead, the nanostructure seems to play the key role, as room temperature ferromagnetism was also found in nanograined, undoped ZnO. However, the origin of room temperature ferromagnetism in primarily non-magnetic oxides like ZnO is still unexplained and a controversial subject within the scientific community. Using low energy muon spin relaxation in combination with SQUID and TEM techniques, we demonstrate that the magnetic volume fraction is strongly related to the sample volume fraction occupied by grain boundaries. With molecular dynamics and density functional theory we find ferromagnetic coupled electron states in ZnO grain boundaries. Our results provide evidence and a microscopic model for room temperature ferromagnetism in oxides.

SELECTION OF CITATIONS
SEARCH DETAIL
...