Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Oncol ; 12: 921473, 2022.
Article in English | MEDLINE | ID: mdl-36313653

ABSTRACT

Purpose: We investigated the feasibility of biology-guided radiotherapy (BgRT), a technique that utilizes real-time positron emission imaging to minimize tumor motion uncertainties, to spare nearby organs at risk. Methods: Volumetric modulated arc therapy (VMAT), intensity-modulated proton (IMPT) therapy, and BgRT plans were created for a paratracheal node recurrence (case 1; 60 Gy in 10 fractions) and a primary peripheral left upper lobe adenocarcinoma (case 2; 50 Gy in four fractions). Results: For case 1, BgRT produced lower bronchus V40 values compared to VMAT and IMPT. For case 2, total lung V20 was lower in the BgRT case compared to VMAT and IMPT. Conclusions: BgRT has the potential to reduce the radiation dose to proximal critical structures but requires further detailed investigation.

2.
Med Phys ; 41(2): 021718, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24506609

ABSTRACT

PURPOSE: This study aims to evaluate the potential and feasibility of positron emission tomography for dynamic lung tumor tracking during radiation treatment. The authors propose a center of mass (CoM) tumor tracking algorithm using gated-PET images combined with a respiratory monitor and investigate the geometric accuracy of the proposed algorithm. METHODS: The proposed PET dynamic lung tumor tracking algorithm estimated the target position information through the CoM of the segmented target volume on gated PET images reconstructed from accumulated coincidence events. The information was continuously updated throughout a scan based on the assumption that real-time processing was supported (actual processing time at each frame ≈ 10 s). External respiratory motion and list-mode PET data were acquired from a phantom programmed to move with measured respiratory traces (external respiratory motion and internal target motion) from human subjects, for which the ground truth target position was known as a function of time. The phantom was cylindrical with six hollow sphere targets (10, 13, 17, 22, 28, and 37 mm in diameter). The measured respiratory traces consisted of two sets: (1) 1D-measured motion from ten healthy volunteers and (2) 3D-measured motion from four lung cancer patients. The authors evaluated the geometric accuracy of the proposed algorithm by quantifying estimation errors (Euclidean distance) between the actual motion of targets (1D-motion and 3D-motion traces) and CoM trajectories estimated by the proposed algorithm as a function of time. RESULTS: The time-averaged error of 1D-motion traces over all trajectories of all targets was 1.6 mm. The error trajectories decreased with time as coincidence events were accumulated. The overall error trajectory of 1D-motion traces converged to within 2 mm in approximately 90 s. As expected, more accurate results were obtained for larger targets. For example, for the 37 mm target, the average error over all 1D-motion traces was 1.1 mm; and for the 10 mm target, the average error over all 1D-motion traces was 2.8 mm. The overall time-averaged error of 3D-motion traces was 1.6 mm, which was comparable to that of the 1D-motion traces. There were small variations in the errors between the 3D-motion traces, although the motion trajectories were very different. The accuracy of the estimates was consistent for all targets except for the smallest. CONCLUSIONS: The authors developed an algorithm for dynamic lung tumor tracking using list-mode PET data and a respiratory motion signal, and demonstrated proof-of-principle for PET-guided lung tumor tracking. The overall tracking error in phantom studies is less than 2 mm.


Subject(s)
Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Movement , Phantoms, Imaging , Positron-Emission Tomography/instrumentation , Radiotherapy, Image-Guided/instrumentation , Algorithms , Humans , Lung Neoplasms/physiopathology , Respiratory-Gated Imaging Techniques
4.
Med Phys ; 37(4): 1674-80, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20443488

ABSTRACT

PURPOSE: P. R. Edholm, R. M. Lewitt, and B. Lindholm, "Novel properties of the Fourier decomposition of the sinogram," in Proceedings of the International Workshop on Physics and Engineering of Computerized Multidimensional Imaging and Processing [Proc. SPIE 671, 8-18 (1986)] described properties of a parallel beam projection sinogram with respect to its radial and angular frequencies. The purpose is to perform a similar derivation to arrive at corresponding properties of a fan-beam projection sinogram for both the equal-angle and equal-spaced detector sampling scenarios. METHODS: One of the derived properties is an approximately zero-energy region in the two-dimensional Fourier transform of the full fan-beam sinogram. This region is in the form of a double-wedge, similar to the parallel beam case, but different in that it is asymmetric with respect to the frequency axes. The authors characterize this region for a point object and validate the derived properties in both a simulation and a head CT data set. The authors apply these results in an application using algebraic reconstruction. RESULTS: In the equal-angle case, the domain of the zero region is (q,k) for which / k/(k-q) / > R/L, where q and k are the frequency variables associated with the detector and view angular positions, respectively, R is the radial support of the object, and L is the source-to-isocenter distance. A filter was designed to retain only sinogram frequencies corresponding to a specified radial support. The filtered sinogram was used to reconstruct the same radial support of the head CT data. As an example application of this concept, the double-wedge filter was used to computationally improve region of interest iterative reconstruction. CONCLUSIONS: Interesting properties of the fan-beam sinogram exist and may be exploited in some applications.


Subject(s)
Fourier Analysis , Tomography, X-Ray Computed/methods , Algorithms , Computer Simulation , Computers , Head/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Models, Theoretical , Phantoms, Imaging , Radiographic Image Interpretation, Computer-Assisted/instrumentation , Radiographic Image Interpretation, Computer-Assisted/methods
5.
Med Phys ; 35(11): 4857-62, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19070219

ABSTRACT

Inverse geometry computed tomography (IGCT) is a new type of volumetric CT geometry that employs a large array of x-ray sources opposite a smaller detector array. Volumetric coverage and high isotropic resolution produce very large data sets and therefore require a computationally efficient three-dimensional reconstruction algorithm. The purpose of this work was to adapt and evaluate a fast algorithm based on Defrise's Fourier rebinning (FORE), originally developed for positron emission tomography. The results were compared with the average of FDK reconstructions from each source row. The FORE algorithm is an order of magnitude faster than the FDK-type method for the case of 11 source rows. In the center of the field-of-view both algorithms exhibited the same resolution and noise performance. FORE exhibited some resolution loss (and less noise) in the periphery of the field-of-view. FORE appears to be a fast and reasonably accurate reconstruction method for IGCT.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Fourier Analysis , Phantoms, Imaging , Time Factors
6.
Med Phys ; 34(6): 2133-42, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17654916

ABSTRACT

Current volumetric computed tomography (CT) methods require seconds to acquire a thick volume (>8 cm) with high resolution. Inverse-geometry CT (IGCT) is a new system geometry under investigation that is anticipated to be able to image a thick volume in a single gantry rotation with isotropic resolution and no cone-beam artifacts. IGCT employs a large array of source spots opposite a smaller detector array. The in-plane field of view (FOV) is primarily determined by the size of the source array, in much the same way that the FOV is determined by the size of the detector array in a conventional CT system. Thus, the size of the source array can be a limitation on the achievable FOV. We propose adding additional detector arrays, spaced apart laterally, to increase the in-plane FOV while still using a modestly sized source array. We determine optimal detector placement to maximize the FOV while obtaining relatively uniform sampling. We also demonstrate low wasted radiation of the proposed system through design and simulation of a pre-patient collimator. Reconstructions from simulated projection data show no artifacts when combining the data from the detector arrays. Finally, to demonstrate feasibility of the concept, an anthropomorphic thorax phantom containing a porcine heart was scanned on a prototype table-top system. The reconstructed axial images demonstrate a 45 cm in-plane FOV using a 23 cm source array.


Subject(s)
Algorithms , Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods , Transducers , Equipment Design , Equipment Failure Analysis , Phantoms, Imaging , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/instrumentation , Reproducibility of Results , Sensitivity and Specificity
7.
Med Phys ; 33(6): 1867-78, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16872094

ABSTRACT

A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a "Defrise" phantom was scanned on both the prototype IGCT scanner and a micro CT system with a +/-5 cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for single-rotation volumetric scanning free from cone-beam artifacts.


Subject(s)
Algorithms , Artifacts , Image Interpretation, Computer-Assisted/methods , Tomography Scanners, X-Ray Computed , Calibration , Humans , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...