Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36676039

ABSTRACT

Plant dehydration-responsive element binding (DREB) transcription factors (TFs) play important roles during stress tolerance by regulating the expression of numerous genes involved in stresses. DREB TFs have been extensively studied in a variety of angiosperms and bryophytes. To date, no information on the identification and characterization of DREB TFs in Dicranum scoparium has been reported. In this study, a new DBF1 gene from D. scoparium was identified by cloning and sequencing. Analysis of the conserved domain and physicochemical properties revealed that DsDBF1 protein has a classic AP2 domain encoding a 238 amino acid polypeptide with a molecular mass of 26 kDa and a pI of 5.98. Subcellular prediction suggested that DsDBF1 is a nuclear and cytoplasmic protein. Phylogenetic analysis showed that DsDBF1 belongs to group A-5 DREBs. Expression analysis by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) revealed that DsDBF1 was significantly upregulated in response to abiotic stresses such as desiccation/rehydration, exposure to paraquat, CdCl2, high and freezing temperatures. Taken together, our data suggest that DsDBF1 could be a promising gene candidate to improve stress tolerance in crop plants, and the characterization of TFs of a stress tolerant moss such as D. scoparium provides a better understanding of plant adaptation mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...