Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5018, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866745

ABSTRACT

Atmospheric rivers (ARs), responsible for extreme weather conditions, are mid-latitude systems that can cause significant damage to coastal areas. While forecasting ARs beyond two weeks remains a challenge, past research suggests potential benefits may come from properly accounting for the changes in sea surface temperature (SST) through air-sea interactions. In this paper, we investigate the impact of ARs on SST over the North Pacific by analyzing 25 years of ocean reanalysis data using an SST budget equation. We show that in the region of strong ocean modification, ocean dynamics can offset over 100% of the anomalous SST warming that would otherwise arise from atmospheric forcing. Among all ocean processes, ageostrophic advection and vertical mixing (diffusion and entrainment) are the most important factors in modifying the SST tendency response. The SST tendency response to ARs varies spatially. For example, in coastal California, the driver of enhanced SST warming is the reduction in ageostrophic advection due to anomalous southerly winds. Moreover, there is a large region where the SST shows a warming response to ARs due to the overall reduction in the total clouds and subsequent increase in total incoming shortwave radiation.

2.
Sci Adv ; 10(18): eadj0777, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38691611

ABSTRACT

Open-ocean polynyas formed over the Maud Rise, in the Weddell Sea, during the winters of 2016-2017. Such polynyas are rare events in the Southern Ocean and are associated with deep convection, affecting regional carbon and heat budgets. Using an ocean state estimate, we found that during 2017, early sea ice melting occurred in response to enhanced vertical mixing of heat, which was accompanied by mixing of salt. The melting sea ice compensated for the vertically mixed salt, resulting in a net buoyancy gain. An additional salt input was then necessary to destabilize the upper ocean. This came from a hitherto unexplored polynya-formation mechanism: an Ekman transport of salt across a jet girdling the northern flank of the Maud Rise. Such transport was driven by intensified eastward surface stresses during 2015-2018. Our results illustrate how highly localized interactions between wind, ocean flow and topography can trigger polynya formation in the open Southern Ocean.

3.
Geophys Res Lett ; 49(4): e2021GL096699, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35865998

ABSTRACT

Airborne lidar altimetry can measure the sea surface height (SSH) over scales ranging from hundreds of kilometers to a few meters. Here, we analyze the spectrum of SSH observations collected during an airborne lidar campaign conducted off the California coast. We show that the variance in the surface wave band can be over 20 times larger than the variance at submesoscales and that the observed SSH variability is sensitive to the directionality of surface waves. Our results support the hypothesis that there is a spectral gap between meso-to-submesoscale motions and small-scale surface waves and also indicate that aliasing of surface waves into lower wavenumbers may complicate the interpretation of SSH spectra. These results highlight the importance of better understanding the contributions of different physics to the SSH variability and considering the SSH spectrum as a continuum in the context of future satellite altimetry missions.

4.
Glob Chang Biol ; 27(22): 5773-5785, 2021 11.
Article in English | MEDLINE | ID: mdl-34386992

ABSTRACT

Ocean circulation connects geographically distinct ecosystems across a wide range of spatial and temporal scales via exchanges of physical and biogeochemical properties. Remote oceanographic processes can be especially important for ecosystems in the Southern Ocean, where the Antarctic Circumpolar Current transports properties across ocean basins through both advection and mixing. Recent tracking studies have indicated the existence of two large-scale, open ocean habitats in the Southern Ocean used by grey petrels (Procellaria cinerea) from two populations (i.e., Kerguelen and Antipodes islands) during their nonbreeding season for extended periods during austral summer (i.e., October to February). In this work, we use a novel combination of large-scale oceanographic observations, surface drifter data, satellite-derived primary productivity, numerical adjoint sensitivity experiments, and output from a biogeochemical state estimate to examine local and remote influences on these grey petrel habitats. Our aim is to understand the oceanographic features that control these isolated foraging areas and to evaluate their ecological value as oligotrophic open ocean habitats. We estimate the minimum local primary productivity required to support these populations to be much <1% of the estimated local primary productivity. The region in the southeast Indian Ocean used by the birds from Kerguelen is connected by circulation to the productive Kerguelen shelf. In contrast, the region in the south-central Pacific Ocean used by seabirds from the Antipodes is relatively isolated suggesting it is more influenced by local factors or the cumulative effects of many seasonal cycles. This work exemplifies the potential use of predator distributions and oceanographic data to highlight areas of the open ocean that may be more dynamic and productive than previously thought. Our results highlight the need to consider advective connections between ecosystems in the Southern Ocean and to re-evaluate the ecological relevance of oligotrophic Southern Ocean regions from a conservation perspective.


Subject(s)
Birds , Ecosystem , Animals , Antarctic Regions , Indian Ocean , Seasons
5.
Sci Rep ; 10(1): 13494, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32778681

ABSTRACT

Satellite remote sensing and numerical models are widely used to estimate large-scale variations in ocean carbon export, but the relationship between export efficiency (e-ratio) of sinking organic carbon out of the surface ocean and its drivers remains poorly understood, especially in the Southern Ocean. Here, we assess the effects of temperature and primary productivity on e-ratio by combining particulate organic carbon export flux from in situ measurements during 1997-2013, environmental parameters from satellite products, and outputs from ocean biogeochemical models in the Southern Ocean. Results show that "High Productivity Low E-ratio" (HPLE) is a common phenomenon in the Subantarctic Zone and the Polar Frontal Zone, but not the Antarctic Zone. The e-ratio shows little dependence on temperature below 6 °C. Our results support the hypothesis that the HPLE phenomenon is due to the large contribution of non-sinking organic carbon. Both temperature and ballast minerals play less important roles in controlling e-ratio than ecosystem structure at low temperatures. These findings suggest that non-sinking organic carbon, ecosystem structure, and region-specific parameterizations of e-ratio are key factors to quantify the carbon export in the Southern Ocean.

6.
J Acoust Soc Am ; 147(2): 1042, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32113306

ABSTRACT

A regional ocean model for Fram Strait provides a framework for interpretation of the variability and structure of acoustic tomography arrivals. The eddy-permitting model (52 vertical levels and 4.5 km horizontal resolution) was evaluated using long-term moored hydrography data and time series of depth-range averaged temperature obtained from the inversion of acoustic tomography measurements. Geometric ray modeling using the ocean model fields reproduces the measured arrival structure of the acoustic tomography experiment. The combination of ocean and acoustic models gives insights into acoustic propagation during winter and spring. Moreover, overlapping arrivals coming from different vertical angles can be resolved and explained. The overlapping arrival of purely refracted rays and surface-reflected/bottom-reflected (SRBR) rays has implications for the inversion of tomography data in Fram Strait. The increased knowledge about the ray-length variations of SRBR rays is valuable for choosing appropriate observation kernels for the data assimilation of acoustic tomography data in Fram Strait.

7.
Front Mar Sci ; 62019 Aug 06.
Article in English | MEDLINE | ID: mdl-31534948

ABSTRACT

There is a growing need for operational oceanographic predictions in both the Arctic and Antarctic polar regions. In the former, this is driven by a declining ice cover accompanied by an increase in maritime traffic and exploitation of marine resources. Oceanographic predictions in the Antarctic are also important, both to support Antarctic operations and also to help elucidate processes governing sea ice and ice shelf stability. However, a significant gap exists in the ocean observing system in polar regions, compared to most areas of the global ocean, hindering the reliability of ocean and sea ice forecasts. This gap can also be seen from the spread in ocean and sea ice reanalyses for polar regions which provide an estimate of their uncertainty. The reduced reliability of polar predictions may affect the quality of various applications including search and rescue, coupling with numerical weather and seasonal predictions, historical reconstructions (reanalysis), aquaculture and environmental management including environmental emergency response. Here, we outline the status of existing near-real time ocean observational efforts in polar regions, discuss gaps, and explore perspectives for the future. Specific recommendations include a renewed call for open access to data, especially real-time data, as a critical capability for improved sea ice and weather forecasting and other environmental prediction needs. Dedicated efforts are also needed to make use of additional observations made as part of the Year of Polar Prediction (YOPP; 2017-2019) to inform optimal observing system design. To provide a polar extension to the Argo network, it is recommended that a network of ice-borne sea ice and upper-ocean observing buoys be deployed and supported operationally in ice-covered areas together with autonomous profiling floats and gliders (potentially with ice detection capability) in seasonally ice covered seas. Finally, additional efforts to better measure and parameterize surface exchanges in polar regions are much needed to improve coupled environmental prediction.

8.
Nature ; 570(7761): 319-325, 2019 06.
Article in English | MEDLINE | ID: mdl-31182856

ABSTRACT

Offshore Antarctic polynyas-large openings in the winter sea ice cover-are thought to be maintained by a rapid ventilation of deep-ocean heat through convective mixing. These rare phenomena may alter abyssal properties and circulation, yet their formation mechanisms are not well understood. Here we demonstrate that concurrent upper-ocean preconditioning and meteorological perturbations are responsible for the appearance of polynyas in the Weddell Sea region of the Southern Ocean. Autonomous profiling float observations-collected in 2016 and 2017 during the largest polynyas to form near the Maud Rise seamount since 1976-reveal that the polynyas were initiated and modulated by the passage of severe storms, and that intense heat loss drove deep overturning within them. Wind-driven upwelling of record strength weakened haline stratification in the upper ocean, thus favouring destabilization in 2016 and 2017. We show that previous Weddell polynyas probably developed under similarly anomalous conditions, which are associated with a mode of Southern Hemisphere climate variability that is predicted to strengthen as a result of anthropogenic climate change.


Subject(s)
Climate Change/statistics & numerical data , Ice Cover , Models, Theoretical , Antarctic Regions , Human Activities , Salinity , Temperature , Time Factors
9.
Global Biogeochem Cycles ; 33(11): 1370-1388, 2019 Nov.
Article in English | MEDLINE | ID: mdl-32025087

ABSTRACT

New estimates of pCO2 from profiling floats deployed by the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project have demonstrated the importance of wintertime outgassing south of the Polar Front, challenging the accepted magnitude of Southern Ocean carbon uptake (Gray et al., 2018, https://doi:10.1029/2018GL078013). Here, we put 3.5 years of SOCCOM observations into broader context with the global surface carbon dioxide database (Surface Ocean CO2 Atlas, SOCAT) by using the two interpolation methods currently used to assess the ocean models in the Global Carbon Budget (Le Quéré et al., 2018, https://doi:10.5194/essd-10-2141-2018) to create a ship-only, a float-weighted, and a combined estimate of Southern Ocean carbon fluxes (<35°S). In our ship-only estimate, we calculate a mean uptake of -1.14 ± 0.19 Pg C/yr for 2015-2017, consistent with prior studies. The float-weighted estimate yields a significantly lower Southern Ocean uptake of -0.35 ± 0.19 Pg C/yr. Subsampling of high-resolution ocean biogeochemical process models indicates that some of the differences between float and ship-only estimates of the Southern Ocean carbon flux can be explained by spatial and temporal sampling differences. The combined ship and float estimate minimizes the root-mean-square pCO2 difference between the mapped product and both data sets, giving a new Southern Ocean uptake of -0.75 ± 0.22 Pg C/yr, though with uncertainties that overlap the ship-only estimate. An atmospheric inversion reveals that a shift of this magnitude in the contemporary Southern Ocean carbon flux must be compensated for by ocean or land sinks within the Southern Hemisphere.

10.
Nat Commun ; 9(1): 209, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29335401

ABSTRACT

The original version of this Article contained errors in Fig. 6. In panel a, the grey highlights obscured the curves for CESM, CM2.6 and SOSE, and the labels indicating SWIR, KP, MR, PAR, and DP were inadvertently omitted. These have now been corrected in both the PDF and HTML versions of the Article.

11.
Nat Commun ; 8(1): 172, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28769035

ABSTRACT

Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.

SELECTION OF CITATIONS
SEARCH DETAIL
...