Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38616358

ABSTRACT

OBJECTIVE: To assess intrarater reliability of ultrasound-determined measurements of skeletal muscle characteristics across different measurement outcomes, imaging techniques, and age groups. METHODS: 2D ultrasound images (B-mode) of the quadriceps were obtained from young (26 ± 4 year, n = 8 M, 8 F) and older (70 ± 7 year, n = 7 M, 5 F) adults on two occasions, separated by 6 ± 3 days. With participants in both standing and supine postures, images were collected from five anatomical sites along the anterior (two sites) and lateral (three sites) compartments of the thigh corresponding to 56%, 39%, and 22% (lateral only) of femur length. Images were analysed for muscle thickness, pennation angle, and echogenicity. Intraclass correlation coefficients (ICC) were used to assess reliability. RESULTS: Muscle thickness values were higher (p < 0.05) on images collected in the stand versus supine posture only for muscles of the anterior compartment, independent of age. Echogenicity values were higher (p < 0.05) in the vastus intermedius on images collected in the supine versus stand posture only in older adults. Pennation angle values were not impacted by imaging posture (p > 0.05). ICC values for thickness, echogenicity, and pennation angle were generally higher for analyses conducted on images collected in the supine versus stand posture. Imaging posture generated a greater difference in ICC values in the lateral versus anterior muscles and in older versus younger participants. CONCLUSION: Our findings suggest that participant posture during imaging impacts the absolute values and intrarater reliability of ultrasound-determined muscle characteristics in a muscle-specific fashion, and this effect is greater in older compared to younger individuals.

2.
J Appl Physiol (1985) ; 135(3): 508-518, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37471216

ABSTRACT

The benefits of exercise involve skeletal muscle redox state alterations of nicotinamide adenine dinucleotide (NAD) and flavin adenine dinucleotide (FAD). We determined the fiber-specific effects of acute exercise on the skeletal muscle redox state in healthy adults. Muscle biopsies were obtained from 19 participants (11 M, 8 F; 26 ± 4 yr) at baseline (fasted) and 30 min and 3 h after treadmill exercise at 80% maximal oxygen consumption (V̇o2max). Muscle samples were probed for autofluorescence of NADH (excitation at 340-360 nm) and oxidized flavoproteins (Fp; excitation at 440-470 nm) and subsequently, fiber typed to quantify the redox signatures of individual muscle fibers. Redox state was calculated as the oxidation-to-reduction redox ratio: Fp/(Fp + NADH). At baseline, pair-wise comparisons revealed that the redox ratio of myosin heavy chain (MHC) I fibers was 7.2% higher than MHC IIa (P = 0.023, 95% CI: 5.2, 9.2%) and the redox ratio of MHC IIa was 8.0% higher than MHC IIx (P = 0.035, 95% CI: 6.8, 9.2%). MHC I fibers also displayed greater NADH intensity than MHC IIx (P = 0.007) and greater Fp intensity than both MHC IIa (P = 0.019) and MHC IIx (P < 0.0001). Fp intensities increased in all fiber types (main effect, P = 0.039) but redox ratios did not change (main effect, P = 0.483) 30 min after exercise. The change in redox ratio was positively correlated with capillary density in MHC I (rho = 0.762, P = 0.037), MHC IIa fibers (rho = 0.881, P = 0.007), and modestly in MHC IIx fibers (rho = 0. 771, P = 0.103). These findings support the use of redox autofluorescence to interrogate skeletal muscle metabolism.NEW & NOTEWORTHY This study is the first to use autofluorescent imaging to describe differential redox states within human skeletal muscle fiber types with exercise. Our findings highlight an easy and efficacious technique for assessing skeletal muscle redox in humans.


Subject(s)
Muscle, Skeletal , NAD , Adult , Humans , NAD/metabolism , Muscle, Skeletal/physiology , Muscle Fibers, Skeletal/metabolism , Exercise/physiology , Myosin Heavy Chains/metabolism , Oxidation-Reduction
3.
Brain Plast ; 8(1): 5-18, 2022.
Article in English | MEDLINE | ID: mdl-36448040

ABSTRACT

Background: Cathepsin B (CTSB) and brain derived neurotrophic factor (BDNF) are increased with aerobic exercise (AE) and skeletal muscle has been identified as a potential source of secretion. However, the intensity of AE and the potential for skeletal muscle contributions to circulating CTSB and BDNF have not been fully studied in humans. Objective: Determine the effects of AE intensity on circulating and skeletal muscle CTSB and BDNF expression profiles. Methods: Young healthy subjects (n = 16) completed treadmill-based AE consisting of VO2max and calorie-matched acute AE sessions at 40%, 65% and 80% VO2max. Fasting serum was obtained before and 30-minutes after each bout of exercise. Skeletal muscle biopsies (vastus lateralis) were taken before, 30-minutes and 3-hours after the 80% bout. Circulating CTSB and BDNF were assayed in serum. CTSB protein, BDNF protein and mRNA expression were measured in skeletal muscle tissue. Results: Serum CTSB increased by 20±7% (p = 0.02) and 30±18% (p = 0.04) after 80% and VO2max AE bouts, respectively. Serum BDNF showed a small non-significant increase (6±3%; p = 0.09) after VO2max. In skeletal muscle tissue, proCTSB increased 3 h-post AE (87±26%; p < 0.01) with no change in CTSB gene expression. Mature BDNF protein decreased (31±35%; p = 0.03) while mRNA expression increased (131±41%; p < 0.01) 3 h-post AE. Skeletal muscle fiber typing revealed that type IIa and IIx fibers display greater BDNF expression compared to type I (p = 0.02 and p < 0.01, respectively). Conclusions: High intensity AE elicits greater increases in circulating CTSB compared with lower intensities. Skeletal muscle protein and gene expression corroborate the potential role of skeletal muscle in generating and releasing neuroprotective exerkines into the circulation.NEW AND NOTEWORTHY: 1) CTSB is enriched in the circulation in an aerobic exercise intensity dependent manner. 2) Skeletal muscle tissue expresses both message and protein of CTSB and BDNF. 3) BDNF is highly expressed in glycolytic skeletal muscle fibers.

4.
Eur J Appl Physiol ; 121(10): 2913-2924, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34196787

ABSTRACT

PURPOSE: Aerobic (AE) and resistance (RE) exercise elicit unique adaptations in skeletal muscle. The purpose here was to compare the post-exercise response of mTOR signaling and select autophagy markers in skeletal muscle to acute AE and RE. METHODS: In a randomized, cross-over design, six untrained men (27 ± 3 years) completed acute AE (40 min cycling, 70% HRmax) and RE (8 sets, 10 repetitions, 65% 1RM). Muscle biopsies were taken at baseline, and at 1 h and 4 h following each exercise. Western blot analyses were performed to examine total and phosphorylated protein levels. Upstream regulator analyses of skeletal muscle transcriptomics were performed to discern the predicted activation states of mTOR and FOXO3. RESULTS: Compared to AE, acute RE resulted in greater phosphorylation (P < 0.05) of mTORSer2448 at 4 h, S6K1Thr389 at 1 h, and 4E- BP1Thr37/46 during the post-exercise period. However, both AE and RE increased mTORSer2448 and S6K1Thr389 phosphorylation at 4 h (P < 0.05). Upstream regulator analyses revealed the activation state of mTOR was increased for both AE (z score, 2.617) and RE (z score, 2.789). No changes in LC3BI protein were observed following AE or RE (P > 0.05), however, LC3BII protein was decreased after both AE and RE at 1 h and 4 h (P < 0.05). p62 protein content was also decreased at 4 h following AE and RE (P < 0.05). CONCLUSION: Both acute AE and RE stimulate mTOR signaling and similarly impact select markers of autophagy. These findings indicate the early adaptive response of untrained human skeletal muscle to divergent exercise modes is not likely mediated through large differences in mTOR signaling or autophagy.


Subject(s)
Autophagy/physiology , Exercise/physiology , Muscle Proteins/metabolism , Muscle, Skeletal/physiology , TOR Serine-Threonine Kinases/metabolism , Adaptation, Physiological/physiology , Adult , Humans , Male , Resistance Training/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...