Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 49(4): 556-573.e6, 2019 05 20.
Article in English | MEDLINE | ID: mdl-31112698

ABSTRACT

Chromatin remodeling accompanies differentiation, however, its role in self-renewal is less well understood. We report that in Drosophila, the chromatin remodeler Kismet/CHD7/CHD8 limits intestinal stem cell (ISC) number and proliferation without affecting differentiation. Stem-cell-specific whole-genome profiling of Kismet revealed its enrichment at transcriptionally active regions bound by RNA polymerase II and Brahma, its recruitment to the transcription start site of activated genes and developmental enhancers and its depletion from regions bound by Polycomb, Histone H1, and heterochromatin Protein 1. We demonstrate that the Trithorax-related/MLL3/4 chromatin modifier regulates ISC proliferation, colocalizes extensively with Kismet throughout the ISC genome, and co-regulates genes in ISCs, including Cbl, a negative regulator of Epidermal Growth Factor Receptor (EGFR). Loss of kismet or trr leads to elevated levels of EGFR protein and signaling, thereby promoting ISC self-renewal. We propose that Kismet with Trr establishes a chromatin state that limits EGFR proliferative signaling, preventing tumor-like stem cell overgrowths.


Subject(s)
Chromatin/metabolism , DNA Helicases/metabolism , Drosophila Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Homeodomain Proteins/metabolism , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Chromatin Assembly and Disassembly/physiology , DNA Helicases/physiology , Drosophila Proteins/physiology , Drosophila melanogaster/metabolism , ErbB Receptors/metabolism , Histone-Lysine N-Methyltransferase/physiology , Histones/metabolism , Homeodomain Proteins/physiology , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Receptors, Invertebrate Peptide/metabolism , Signal Transduction/physiology , Stem Cells/metabolism , Transcription Factors/metabolism
2.
J Cell Biol ; 207(3): 351-63, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25365996

ABSTRACT

Signaling and endocytosis are highly integrated processes that regulate cell fate. In the Drosophila melanogaster sensory bristle lineages, Numb inhibits the recycling of Notch and its trafficking partner Sanpodo (Spdo) to regulate cell fate after asymmetric cell division. In this paper, we have used a dual GFP/Cherry tagging approach to study the distribution and endosomal sorting of Notch and Spdo in living pupae. The specific properties of GFP, i.e., quenching at low pH, and Cherry, i.e., slow maturation time, revealed distinct pools of Notch and Spdo: cargoes exhibiting high GFP/low Cherry fluorescence intensities localized mostly at the plasma membrane and early/sorting endosomes, whereas low GFP/high Cherry cargoes accumulated in late acidic endosomes. These properties were used to show that Spdo is sorted toward late endosomes in a Numb-dependent manner. This dual-tagging approach should be generally applicable to study the trafficking dynamics of membrane proteins in living cells and tissues.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Endosomes/metabolism , Juvenile Hormones/metabolism , Receptors, Notch/metabolism , Animals , Cadherins/metabolism , Cell Division , Drosophila melanogaster/cytology , Epithelial Cells/metabolism , Green Fluorescent Proteins/metabolism , Hydrogen-Ion Concentration , Microfilament Proteins/metabolism , Microscopy, Fluorescence , Protein Transport , Recombinant Fusion Proteins/metabolism , Time-Lapse Imaging
4.
Curr Biol ; 23(7): 588-93, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23523245

ABSTRACT

Numb acts as a cell-fate determinant during asymmetric and stem cell divisions in both vertebrates and invertebrates [1, 2]. In Drosophila, Numb is unequally segregated in asymmetrically dividing sensory organ precursor cells (SOPs). Numb is inherited by the pIIb cell (Notch OFF) and is absent from the pIIa cell (Notch ON) [3, 4]. Numb is required to establish directional Notch signaling during cytokinesis [3, 5-7]. Using real-time imaging of a functional GFP-tagged Numb, we show that Numb relocalizes during cytokinesis from the basal cortex of pIIb to subapical endosomes. This relocalization appeared to depend on its interaction with the α-adaptin [8, 9]. Live imaging of Sanpodo (Spdo), a membrane protein interacting with Numb and regulating the trafficking of Notch [6, 7, 10-15], revealed that Spdo is internalized during cytokinesis and coaccumulates with Numb in pIIb endosomes. Using a GFP-tagged Notch [6], we found that Notch coaccumulates with Spdo in a Numb-dependent manner in these pIIb endosomes. Numb was, however, dispensable for the internalization of Notch and Spdo. We propose that Numb interacts with internalized Spdo-Notch oligomers at sorting endosomes and inhibits the recycling of Notch, thereby creating an asymmetry in Notch distribution along the pIIa-pIIb interface and regulating binary fate choice.


Subject(s)
Asymmetric Cell Division/physiology , Drosophila Proteins/metabolism , Drosophila Proteins/physiology , Drosophila/physiology , Endosomes/metabolism , Juvenile Hormones/physiology , Receptors, Notch/metabolism , Amino Acid Sequence , Animals , Chromosomes, Artificial, Bacterial , Drosophila Proteins/genetics , Juvenile Hormones/genetics , Microscopy, Fluorescence , Models, Biological , Molecular Sequence Data , Neural Stem Cells/physiology , Protein Transport/physiology , Sensory Receptor Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...