Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Spectrosc ; 193(2): 376-388, 1999 Feb.
Article in English | MEDLINE | ID: mdl-9920712

ABSTRACT

We report the results of an optical-optical double resonance experiment to determine the NaK 3(1)Pi state potential energy curve. In the first step, a narrow band cw dye laser (PUMP) is tuned to line center of a particular 2(A)1Sigma+(v', J') <-- 1(X)1Sigma+(v", J") transition, and its frequency is then fixed. A second narrowband tunable cw Ti:Sapphirelaser (PROBE) is then scanned, while 3(1)Pi --> 1(X)1Sigma+ violet fluorescence is monitored. The Doppler-free signals accurately map the 3(1)Pi(v, J) ro-vibrational energy levels. These energy levels are then fit to a Dunham expansion to provide a set of molecular constants. The Dunham constants, in turn, are used to construct an RKR potential curve. Resolved 3(1)Pi(v, J) --> 1(X)1Sigma+(v", J") fluorescence scans are also recorded with both PUMP and PROBE laser frequencies fixed. Comparison between observed and calculated Franck-Condon factors is used to determine the absolute vibrational numbering of the 3(1)Pi state levels and to determine the variation of the 3(1)Pi --> 1(X)1Sigma+ transitiondipole moment with internuclear separation. The recent theoretical calculation of the NaK 3(1)Pi state potential reported by Magnier and Millié (1996, Phys. Rev. A 54, 204) is in excellent agreement with the present experimental RKR curve. Copyright 1999 Academic Press.

SELECTION OF CITATIONS
SEARCH DETAIL
...