Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Life Sci ; 346: 122649, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38626868

ABSTRACT

AIMS: Leptin irresponsiveness, which is often associated with obesity, can have significant impacts on the hypothalamic proteome of individuals, including those who are lean. While mounting evidence on leptin irresponsiveness has focused on obese individuals, understanding the early molecular and proteomic changes associated with deficient hypothalamic leptin signaling in lean individuals is essential for early intervention and prevention of metabolic disorders. Leptin receptor antagonists block the binding of leptin to its receptors, potentially reducing its effects and used in cases where excessive leptin activity might be harmful. MATERIALS AND METHODS: In this work, we blocked the central actions of leptin in lean male adult Wistar rat by chronically administering intracerebroventricularly the superactive leptin receptor antagonist (SLA) (D23L/L39A/D40A/F41A) and investigated its impact on the hypothalamic proteome using label-free sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) for quantitative proteomics. KEY FINDINGS: Our results show an accumulation of proteins involved in mRNA processing, mRNA stability, and translation in the hypothalamus of SLA-treated rats. Conversely, hypothalamic leptin signaling deficiency reduces the representation of proteins implicated in energy metabolism, neural circuitry, and neurotransmitter release. SIGNIFICANCE: The alterations in the adult rat hypothalamic proteome contribute to dysregulate appetite, metabolism, and energy balance, which are key factors in the development and progression of obesity and related metabolic disorders. Additionally, using bioinformatic analysis, we identified a series of transcription factors that are potentially involved in the upstream regulatory mechanisms responsible for the observed signature.


Subject(s)
Hypothalamus , Leptin , Proteome , Proteomics , Rats, Wistar , Receptors, Leptin , Signal Transduction , Animals , Male , Leptin/metabolism , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/deficiency , Hypothalamus/metabolism , Hypothalamus/drug effects , Rats , Signal Transduction/drug effects , Proteomics/methods , Proteome/metabolism , Obesity/metabolism , Energy Metabolism/drug effects
2.
Ann Med ; 55(2): 2286531, 2023.
Article in English | MEDLINE | ID: mdl-38010429

ABSTRACT

OBJECTIVE: Vector-borne diseases are a growing burden worldwide. In particular, the risks of allergic reactions to bites are associated with growing arthropod populations in contact with the public. The diversity of allergic reactions associated with host and arthropod factors difficult disease diagnosis, prognosis and prevention. Therefore, arthropod-associated allergies are underdiagnosed and require better surveillance of arthropod populations and disease diagnosis and management. METHODS: To face these challenges, in this study, we describe five cases to illustrate arthropod-associated allergies with different symptomatology, including alpha-gal syndrome (AGS) associated with anti-alpha-gal IgE antibody titres. Information on symptoms in response to arthropod bites was collected from patients and medical doctors. RESULTS: The five cases included patients bitten by a robber fly and different tick species. Cases were in Spain or U.S.A. Two cases were diagnosed with AGS and one case was diagnosed with anaphylaxis in response to tick bite with high anti-alpha-gal IgE levels. The symptoms in response to arthropod bites vary between different cases. CONCLUSION: Allergic reactions and symptoms in response to arthropod bites vary in association with host and arthropod factors. Herein we propose recommendations to control allergic symptoms, associated disease risk factors and the way forward to advance in the prevention and control of arthropod-associated allergies.


Subject(s)
Anaphylaxis , Arthropods , Food Hypersensitivity , Animals , Humans , Immunoglobulin E , Food Hypersensitivity/epidemiology , Food Hypersensitivity/etiology , Anaphylaxis/etiology , Anaphylaxis/complications
3.
Biomed Pharmacother ; 168: 115829, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37922649

ABSTRACT

The alpha-Gal syndrome (AGS) is a tick-borne allergy. A multi-omics approach was used to determine the effect of tick saliva and mammalian meat consumption on zebrafish gut transcriptome and proteome. Bioinformatics analysis using R software was focused on significant biological and metabolic pathway changes associated with AGS. Ortholog mapping identified highly concordant human ortholog genes for the detection of disease-enriched pathways. Tick saliva treatment increased zebrafish mortality, incidence of hemorrhagic type allergic reactions and changes in behavior and feeding patterns. Transcriptomics analysis showed downregulation of biological and metabolic pathways correlated with anti-alpha-Gal IgE and allergic reactions to tick saliva affecting blood circulation, cardiac and vascular smooth muscle contraction, behavior and sensory perception. Disease enrichment analysis revealed downregulated orthologous genes associated with human disorders affecting nervous, musculoskeletal, and cardiovascular systems. Proteomics analysis revealed suppression of pathways associated with immune system production of reactive oxygen species and cardiac muscle contraction. Underrepresented proteins were mainly linked to nervous and metabolic human disorders. Multi-omics data revealed inhibition of pathways associated with adrenergic signaling in cardiomyocytes, and heart and muscle contraction. Results identify tick saliva-related biological pathways supporting multisystemic organ involvement and linking α-Gal sensitization with other illnesses for the identification of potential disease biomarkers.


Subject(s)
Biological Phenomena , Food Hypersensitivity , Ticks , Animals , Humans , Zebrafish , Saliva , Multiomics , Mammals
4.
STAR Protoc ; 4(3): 102557, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37691149

ABSTRACT

Paratransgenesis through genetic manipulation of symbiotic or commensal microorganisms has been proposed as an effective and environmentally sound approach for the control of vector-borne diseases, including tick bite-related pathologies, and reducing pathogen transmission. Here, we present a protocol for Sphingomonas transformation with Anaplasma phagocytophilum major surface protein 4 and heat shock protein 70. We describe a step-by-step protocol for in vitro study of interactions between transformed Franken Sphingomonas and Ixodes scapularis ISE6 tick cells during A. phagocytophilum infection. For complete details on the use and execution of this protocol, please refer to Mazuecos et al. (2023).1.


Subject(s)
Anaplasma phagocytophilum , Coinfection , Ixodes , Sphingomonas , Animals , Anaplasma phagocytophilum/genetics , Sphingomonas/genetics , Ixodes/genetics , Ixodes/metabolism , HSP70 Heat-Shock Proteins/metabolism
5.
Parasit Vectors ; 16(1): 242, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37468955

ABSTRACT

BACKGROUND: Alpha-Gal syndrome (AGS) is a tick-borne food allergy caused by IgE antibodies against the glycan galactose-alpha-1,3-galactose (α-Gal) present in glycoproteins and glycolipids from mammalian meat. To advance in the diagnosis and treatment of AGS, further research is needed to unravel the molecular and immune mechanisms underlying this syndrome. The objective of this study is the characterization of tick salivary components and proteins with and without α-Gal modifications involved in modulating human immune response against this carbohydrate. METHODS: Protein and α-Gal content were determined in tick saliva components, and proteins were identified by proteomics analysis of tick saliva fractions. Pathophysiological changes were recorded in the zebrafish (Danio rerio) model after exposure to distinct Ixodes ricinus tick salivary components. Serum samples were collected from zebrafish at day 8 of exposure to determine anti-α-Gal, anti-glycan, and anti-tick saliva protein IgM antibody titers by enzyme-linked immunosorbent assay (ELISA). RESULTS: Zebrafish treated with tick saliva and saliva protein fractions combined with non-protein fractions demonstrated significantly higher incidence of hemorrhagic type allergic reactions, abnormal behavioral patterns, or mortality when compared to the phosphate-buffered saline (PBS)-treated control group. The main tick salivary proteins identified in these fractions with possible functional implication in AGS were the secreted protein B7P208-salivary antigen p23 and metalloproteases. Anti-α-Gal and anti-tick salivary gland IgM antibody titers were significantly higher in distinct saliva protein fractions and deglycosylated saliva group when compared with PBS-treated controls. Anti-glycan antibodies showed group-related profiles. CONCLUSIONS: Results support the hypothesis that tick salivary biomolecules with and without α-Gal modifications are involved in modulating immune response against this carbohydrate.


Subject(s)
Food Hypersensitivity , Ixodes , Tick Bites , Animals , Humans , Zebrafish/metabolism , Saliva , Galactose , Immunoglobulin E , Food Hypersensitivity/etiology , Arthropod Proteins , Immunoglobulin M , Mammals
6.
Ticks Tick Borne Dis ; 14(6): 102227, 2023 11.
Article in English | MEDLINE | ID: mdl-37419001

ABSTRACT

Ticks and tick-borne diseases constitute a major threat for human and animal health worldwide. Vaccines for the control of tick infestations and transmitted pathogens still represents a challenge for science and health. Vaccines have evolved with antigens derived from inactivated pathogens to recombinant proteins and vaccinomics approaches. Recently, vaccines for the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have shown the efficacy of new antigen delivery platforms. However, until now only two vaccines based on recombinant Bm86/Bm95 antigens have been registered and commercialized for the control of cattle-tick infestations. Nevertheless, recently new technologies and approaches are under consideration for vaccine development for the control of ticks and tick-borne pathogens. Genetic manipulation of tick commensal bacteria converted enemies into friends. Frankenbacteriosis was used to control tick pathogen infection. Based on these results, the way forward is to develop new paratransgenic interventions and vaccine delivery platforms for the control of tick-borne diseases.


Subject(s)
COVID-19 , Cattle Diseases , Rhipicephalus , Tick Infestations , Tick-Borne Diseases , Vaccines , Cattle , Animals , Humans , Tick Infestations/prevention & control , Tick Infestations/veterinary , SARS-CoV-2/metabolism , Vaccines/genetics , Tick-Borne Diseases/prevention & control , Rhipicephalus/metabolism , Antigens , Cattle Diseases/prevention & control
7.
Exp Appl Acarol ; 90(1-2): 83-98, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37285111

ABSTRACT

Ticks attaching to ear canals of humans and animals are the cause of otoacariasis, common in rural areas of Nepal. The plant Clerodendrum viscosum is used in multiple indigenous systems of medicine by ethnic communities in the Indo-Nepali-Malaysian region. Visiting the Chitwan National Park, we learned that in indigenous medicine, flower extract of C. viscosum is utilized to treat digestive disorders and extracts from leaves as tick repellent to prevent ticks from invading or to remove them from the ear canal. The objective of our study was to provide support to indigenous medicine by characterizing the in vivo effect of leave extracts on ticks under laboratory conditions and its phytochemical composition. We collected plant parts of C. viscosum (leaves and flowers) and mango (Mangifera indica) leaves at the Chitwan National Park, previously associated with repellent activity to characterize their effect on Ixodes ricinus ticks by in vivo bioassays. A Q-ToF high-resolution analysis (HPLC-ESI-QToF) was conducted to elucidate phenolic compounds with potential repellent activity. Clerodendrum viscosum and M. indica leaf extracts had the highest tick repellent efficacy (%E = 80-100%) with significant differences when compared to C. viscosum flowers extracts (%E = 20-60%) and phosphate-buffered saline. Phytochemicals with tick repellent function as caffeic acid, fumaric acid and p-coumaric acid glucoside were identified in C. viscosum leaf extracts by HPLC-ESI-QToF, but not in non-repellent flower extracts. These results support the Nepali indigenous medicine application of C. viscosum leaf extracts to repel ticks. Additional research is needed for the development of natural and green repellent formulations to reduce the risks associated with ticks resistant to acaricides.


Subject(s)
Acaricides , Clerodendrum , Insect Repellents , Ixodes , Humans , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Clerodendrum/chemistry , Insect Repellents/pharmacology
8.
iScience ; 26(5): 106697, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37168564

ABSTRACT

Tick microbiota can be targeted for the control of tick-borne diseases such as human granulocytic anaplasmosis (HGA) caused by model pathogen, Anaplasma phagocytophilum. Frankenbacteriosis is inspired by Frankenstein and defined here as paratransgenesis of tick symbiotic/commensal bacteria to mimic and compete with tick-borne pathogens. Interactions between A. phagocytophilum and symbiotic Sphingomonas identified by metaproteomics analysis in Ixodes scapularis midgut showed competition between both bacteria. Consequently, Sphingomonas was selected for frankenbacteriosis for the control of A. phagocytophilum infection and transmission. The results showed that Franken Sphingomonas producing A. phagocytophilum major surface protein 4 (MSP4) mimic pathogen and reduce infection in ticks by competition and interaction with cell receptor components of infection. Franken Sphingomonas-MSP4 transovarial and trans-stadial transmission suggests that tick larvae with genetically modified Franken Sphingomonas-MSP4 could be produced in the laboratory and released in the field to compete and replace the wildtype populations with associated reduction in pathogen infection/transmission and HGA disease risks.

9.
J Funct Foods ; 101: 105412, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36644001

ABSTRACT

The aim of this study was to characterize serum protein biomarkers for nutritional status that may be used as predictors for disease symptomatology in COVID-19 patients before and after vaccination. In pre-vaccine cohorts, proteomics analysis revealed significant differences between groups, with serum proteins alpha-1-acid glycoproteins (AGPs) 1 and 2, C-reactive protein (CRP) and retinol binding protein (RBP) increasing with COVID-19 severity, in contrast with serum albumin, transthyretin (TTR) and serotransferrin (TF) reduction as the symptomatology increased. Immunoassay reproduced and validated proteomics results of serum proteins albumin and RBP. In post-vaccine cohorts, the results showed the same pattern as in pre-vaccine cohorts for serum proteins AGPs, CRP, albumin and TTR. However, TF levels were similar between groups and RBP presented a slight reduction as COVID-19 symptomatology increased. In these cohorts, immunoassay validated proteomics results of serum proteins albumin, TTR and TF. Additionally, immune response to α-Gal in pre-vaccine cohorts varied in predominant immunoglobulin type profile, while post-vaccine groups presented mainly anti-α-Gal protective IgG antibodies. The study identified serum nutritional biomarkers that could potentially predict an accurate prognostic of COVID-19 disease to provide an appropriate nutritional care and guidance in non-vaccinated and vaccinated individuals against SARS-CoV-2. These results highlight the importance of designing personalized nutrition protocols to improve diet along with the application of prebiotics or probiotics for the control of COVID-19 and other infectious diseases.

10.
Food Funct ; 13(21): 11353-11368, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36260060

ABSTRACT

In mammals, the liver is involved in nutrient metabolism and in the regulation of lipid and glucose homeostasis. Multiple studies have described improvements in liver disorders after regular consumption of grape seed extract (GSE). GSE prevents or ameliorates hepatic metabolic dysfunction through AMPK activation, which reduces hepatic lipogenesis while enhancing hepatic lipid oxidation. However, the involvement of ChREBPß and PPARß/δ in these effects has not been fully elucidated. We aim to demonstrate that chronic consumption of GSE at low doses (25 mg kg-1 body weight per day) produces beneficial effects on hepatic glucose and lipid metabolism in young lean Wistar rats and that part of these effects involve ChREBPß inactivation and PPARß/δ activation. In our study, increased concentrations of structurally related (-)-(epi)catechin metabolites and 5-carbon ring fission metabolites were found in the serum of GSE-supplemented rats parallel with the reduction in triglycerides and leptin levels, hepatic cholesterol content and visceral adiposity. GSE supplementation inactivates ChREBP and GSK-3ß, which has been linked to improvements in hepatic lipid and glucose metabolism. Furthermore, the consumption of GSE promotes the expression of Pparß/δ, as well as Pgc-1α and Acox-1, which control hepatic lipid oxidation. Interestingly, pharmacological inhibition of PPARß/δ slowed the induction of Pgc-1α and Acox-1, as well as the activation of AMPK triggered by GSE consumption. Our data suggest that PPARß/δ activation is involved in the metabolic reprogramming effects of chronic GSE consumption in young rats, by modulating, at least, part of the transcriptional programs that maintain hepatic and systemic fuel homeostasis.


Subject(s)
Grape Seed Extract , Lipid Metabolism , Liver , PPAR delta , PPAR-beta , Animals , Rats , AMP-Activated Protein Kinases/metabolism , Dietary Supplements , Glucose/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Lipids , Liver/metabolism , PPAR delta/genetics , PPAR delta/metabolism , PPAR-beta/genetics , PPAR-beta/metabolism , Rats, Wistar
11.
Molecules ; 27(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36144669

ABSTRACT

In the last two years, the coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a scientific and social challenge worldwide. Vaccines have been the most effective intervention for reducing virus transmission and disease severity. However, genetic virus variants are still circulating among vaccinated individuals with different disease symptomatology. Understanding the protective- or disease-associated mechanisms in vaccinated individuals is relevant to advances in vaccine development and implementation. To address this objective, serum-protein profiles were characterized by quantitative proteomics and data-analysis algorithms in four cohorts of uninfected and SARS-CoV-2-infected vaccinated individuals with asymptomatic, non-severe, and severe disease symptomatology. The results show that immunoglobulins were the most overrepresented proteins in infected cohorts when compared to PCR-negative individuals. The immunoglobulin profile varied between different infected cohorts and correlated with protective- or disease-associated capacity. Overrepresented immunoglobulins in PCR-positive individuals correlated with protective response against SARS-CoV-2, other viruses, and thrombosis in asymptomatic cases. In non-severe cases, correlates of protection against SARS-CoV-2 and HBV together with risk of myasthenia gravis and allergy and autoantibodies were observed. Patients with severe symptoms presented risk for allergy, chronic idiopathic thrombocytopenic purpura, and autoantibodies. The analysis of underrepresented immunoglobulins in PCR-positive compared to PCR-negative individuals identified vaccine-induced protective epitopes in various coronavirus proteins, including the spike receptor-binding domain RBD. Non-immunoglobulin proteins were associated with COVID-19 symptoms and biological processes. These results evidence host-associated differences in response to vaccination and the possibility of improving vaccine efficacy against SARS-CoV-2.


Subject(s)
COVID-19 , Hypersensitivity , Viral Vaccines , Autoantibodies , COVID-19/prevention & control , Epitopes , Humans , Proteomics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
12.
Sci Total Environ ; 844: 157241, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35817121

ABSTRACT

Air pollution and associated particulate matter (PM) affect environmental and human health worldwide. The intense vehicle usage and the high population density in urban areas are the main causes of this public health impact. Epidemiological studies have provided evidence on the effect of air pollution on airborne SARS-CoV-2 transmission and COVID-19 disease prevalence and symptomatology. However, the causal relationship between air pollution and COVID-19 is still under investigation. Based on these results, the question addressed in this study was how long SARS-CoV-2 survives on the surface of PM from different origin to evaluate the relationship between fuel and atmospheric pollution and virus transmission risk. The persistence and viability of SARS-CoV-2 virus was characterized in 5 engine exhaust PM and 4 samples of atmospheric PM10. The results showed that SARS-CoV-2 remains on the surface of PM10 from air pollutants but interaction with engine exhaust PM inactivates the virus. Consequently, atmospheric PM10 levels may increase SARS-CoV-2 transmission risk thus supporting a causal relationship between these factors. Furthermore, the relationship of pollution PM and particularly engine exhaust PM with virus transmission risk and COVID-19 is also affected by the impact of these pollutants on host oxidative stress and immunity. Therefore, although fuel PM inactivates SARS-CoV-2, the conclusion of the study is that both atmospheric and engine exhaust PM negatively impact human health with implications for COVID-19 and other diseases.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , COVID-19/epidemiology , Humans , Particulate Matter/analysis , SARS-CoV-2 , Vehicle Emissions
13.
J Asthma Allergy ; 15: 957-970, 2022.
Article in English | MEDLINE | ID: mdl-35879928

ABSTRACT

The α-Gal syndrome (AGS) is a pathognomonic immunoglobulin E (IgE)-mediated delayed anaphylaxis in foods containing the oligosaccharide galactose-α-1,3-galactose (α-Gal) such as mammalian meat or dairy products. Clinical presentation of AGS can also comprise immediate hypersensitivity due to anticancer therapy, gelatin-containing vaccines or mammalian serum-based antivenom. The IgE initial sensitization is caused by hard-bodied tick bites and symptomatic individuals typically develop delayed pruritus, urticaria, angioedema, anaphylaxis, malaise or gut-related symptoms. Due to inapparent presentation, delayed reactions and a wide variety of patients´ clinical history, the AGS diagnosis and treatment remain challenging. This review covers not only current diagnostic methods used for AGS such as the skin prick test (SPT), the oral food challenge (OFC), anti-α-Gal IgE levels measurement and the basophil activation test (BAT), but also potentially relevant next-generation diagnostic tools like the mast cell activation test (MAT), the histamine-release (HR) assay, omics technologies and model-based reasoning (MBR). Moreover, it focuses on the therapeutical medical and non-medical methods available and current research methods that are being applied in order to elucidate the molecular, physiological and immune mechanisms underlying this allergic disorder. Lastly, future treatment and preventive tools are also discussed, being of utmost importance for the identification of tick salivary molecules, with or without α-Gal modifications, that trigger IgE sensitivity as they could be the key for further vaccine development. Bearing in mind climate change, the tick-host paradigm will shift towards an increasing number of AGS cases in new regions worldwide, which will pose new challenges for clinicians in the future.

14.
Antioxidants (Basel) ; 10(10)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34679670

ABSTRACT

Aging is a continuous, universal, and irreversible process that determines progressive loss of adaptability. The liver is a critical organ that supports digestion, metabolism, immunity, detoxification, vitamin storage, and hormone signaling. Nevertheless, the relationship between aging and the development of liver diseases remains elusive. In fact, although prolonged fasting in adult rodents and humans delays the onset of the disease and increases longevity, whether prolonged fasting could exert adverse effects in old organisms remains incompletely understood. In this work, we aimed to characterize the oxidative stress and nuclear proteome in the liver of 3-month- and 24-month-old male Wistar rats upon 36 h of fasting and its adaptation in response to 30 min of refeeding. To this end, we analyzed the hepatic lipid peroxidation levels (TBARS) and the expression levels of genes associated with fat metabolism and oxidative stress during aging. In addition, to gain a better insight into the molecular and cellular processes that characterize the liver of old rats, the hepatic nuclear proteome was also evaluated by isobaric tag quantitation (iTRAQ) mass spectrometry-based proteomics. In old rats, aging combined with prolonged fasting had great impact on lipid peroxidation in the liver that was associated with a marked downregulation of antioxidant genes (Sod2, Fmo3, and Cyp2C11) compared to young rats. Besides, our proteomic study revealed that RNA splicing is the hepatic nuclear biological process markedly affected by aging and this modification persists upon refeeding. Our results suggest that aged-induced changes in the nuclear proteome could affect processes associated with the adaptative response to refeeding after prolonged fasting, such as those involved in the defense against oxidative stress.

15.
Cell Rep ; 36(4): 109459, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34320357

ABSTRACT

Active brown adipose tissue (BAT) consumes copious amounts of glucose, yet how glucose metabolism supports thermogenesis is unclear. By combining transcriptomics, metabolomics, and stable isotope tracing in vivo, we systematically analyze BAT glucose utilization in mice during acute and chronic cold exposure. Metabolite profiling reveals extensive temperature-dependent changes in the BAT metabolome and transcriptome upon cold adaptation, discovering unexpected metabolite markers of thermogenesis, including increased N-acetyl-amino acid production. Time-course stable isotope tracing further reveals rapid incorporation of glucose carbons into glycolysis and TCA cycle, as well as several auxiliary pathways, including NADPH, nucleotide, and phospholipid synthesis pathways. Gene expression differences inconsistently predict glucose fluxes, indicating that posttranscriptional mechanisms also govern glucose utilization. Surprisingly, BAT swiftly generates fatty acids and acyl-carnitines from glucose, suggesting that lipids are rapidly synthesized and immediately oxidized. These data reveal versatility in BAT glucose utilization, highlighting the value of an integrative-omics approach to understanding organ metabolism.


Subject(s)
Adipose Tissue, Brown/metabolism , Glucose/metabolism , Isotope Labeling , Amino Acids/metabolism , Animals , Citric Acid Cycle/genetics , Cold Temperature , Fatty Acids/metabolism , Glycolysis/genetics , Metabolome/genetics , Mice, Inbred C57BL , Oxidation-Reduction , Phosphatidylglycerols/metabolism , Transcriptome/genetics
16.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33924880

ABSTRACT

The altered function of adipose tissue can result in obesity, insulin resistance, and its metabolic complications. Leptin, acting on the central nervous system, modifies the composition and function of adipose tissue. To date, the molecular changes that occur in epididymal white adipose tissue (eWAT) during chronic leptin treatment are not fully understood. Herein we aimed to address whether PPARß/δ could mediate the metabolic actions induced by leptin in eWAT. To this end, male 3-month-old Wistar rats, infused intracerebroventricularly (icv) with leptin (0.2 µg/day) for 7 days, were daily co-treated intraperitoneally (ip) without or with the specific PPARß/δ receptor antagonist GSK0660 (1 mg/kg/day). In parallel, we also administered GSK0660 to control rats fed ad libitum without leptin infusion. Leptin, acting at central level, prevented the starvation-induced increase in circulating levels of FGF21, while induced markedly the endogenous expression of FGF21 and browning markers of eWAT. Interestingly, GSK0660 abolished the anorectic effects induced by icv leptin leading to increased visceral fat mass and reduced browning capacity. In addition, the pharmacological inhibition of PPARß/δ alters the immunomodulatory actions of central leptin on eWAT. In summary, our results demonstrate that PPARß/δ is involved in the up-regulation of FGF21 expression induced by leptin in visceral adipose tissue.


Subject(s)
Adipose Tissue, White/physiology , Fibroblast Growth Factors/metabolism , Leptin/physiology , PPAR gamma/metabolism , PPAR-beta/metabolism , Animals , Hypothalamus/metabolism , Infusions, Intraventricular , Klotho Proteins , Male , Membrane Proteins/metabolism , PPAR gamma/antagonists & inhibitors , PPAR-beta/antagonists & inhibitors , Rats, Wistar , Sulfones , Thiophenes
17.
Metabolism ; 115: 154453, 2021 02.
Article in English | MEDLINE | ID: mdl-33249043

ABSTRACT

BACKGROUND: Cardiovascular disease in obese individuals with type 2 diabetes is often associated with hyperleptinemia and leptin resistance, while other studies support that leptin has cardioprotective effects. Besides, the role of leptin in regulating cardiac atrophy or hypertrophy remains to be clearly defined. In fact, in rats with normal leptin sensitivity, the molecular underpinnings of the effects of central leptin regulating cardiac structural pathways remain poorly understood. OBJECTIVE: Hence, we assessed the effects of intracerebroventricular (icv) leptin infusion on cardiac remodeling analyzing FOXO1/3 and mTORC1 pathways, focusing special attention to PPARß/δ as mediator of central leptin's effects on cardiac metabolism. METHODS: Male 3-months-old Wistar rats, infused with icv leptin (0.2 µg/day) for 7 days, were daily co-treated intraperitoneally with the specific PPARß/δ antagonist GSK0660, at 1 mg/kg per day along leptin treatment. RESULTS: Central leptin regulated dynamically, in an opposite manner, the network between FOXOs and mTORC1 and induced an atrophy-related gene program in cardiac tissue. Leptin activated the anti-hypertrophic kinase GSK3ß and increased the protein levels of muscle-specific ubiquitin ligases, muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/Atrogin-1 involved in limiting cardiac hypertrophy. FOXO1 activity and the expression of their target genes, Sod2 and Lpl, were also increased in the heart upon central leptin infusion. Besides, Beclin-1 and LC3B-II, gene products of the autophagic pathway response, were upregulated, while the content and expression levels of phenotypic markers of cardiac hypertrophy as ANP and ß-myosin heavy chain, gene product of Myh7 were significantly decreased. On the other hand, mTORC1 activity and OXPHOS protein levels were decreased suggesting a key role of central leptin preventing cardiac oxidative stress. In fact, the content of carbonylated proteins, TBARS and ROS/RSN were not increased in cardiac tissue in response to central leptin infusion. Finally, the pharmacological inhibition of PPARß/δ, via in vivo administration of the selective antagonist GSK0660, blunted the induction of FOXO1/3, Atrogin-1, MuRF1 and GSK3ß in the heart mediated by icv leptin infusion. CONCLUSIONS: Our results demonstrate that, in lean rats with normal leptin sensitivity, central leptin regulates nutrient sensing pathways in heart contributing to balance cardiac remodeling through the anti- and pro-hypertrophic programs, and in this process is involved PPARß/δ.


Subject(s)
Forkhead Box Protein O1/metabolism , Forkhead Box Protein O3/metabolism , Leptin/pharmacology , Myocardium/metabolism , PPAR delta/metabolism , PPAR-beta/metabolism , TOR Serine-Threonine Kinases/metabolism , Ventricular Remodeling/drug effects , Animals , Cardiomegaly/metabolism , Heart/drug effects , Male , PPAR delta/antagonists & inhibitors , PPAR-beta/antagonists & inhibitors , Rats , Rats, Wistar , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Sulfones/pharmacology , Thiophenes/pharmacology
18.
Nutrients ; 11(8)2019 Aug 10.
Article in English | MEDLINE | ID: mdl-31405194

ABSTRACT

Ageing is a major risk factor for the development of metabolic disorders linked to dyslipidemia, usually accompanied by increased adiposity. The goal of this work was to investigate whether avoiding an excessive increase in adiposity with ageing, via moderate chronic food restriction (FR), ameliorates postprandial dyslipidemia in a rat model of metabolic syndrome associated with ageing. Accordingly, we performed an oral lipid loading test (OLLT) in mature middle-aged (7 months) and middle-old-aged (24 months) Wistar rats fed ad libitum (AL) or under moderate FR for 3 months. Briefly, overnight fasted rats were orally administered a bolus of extra-virgin olive oil (1 mL/Kg of body weight) and blood samples were taken from the tail vein before fat load (t = 0) and 30, 60, 90, 120, 180, and 240 min after fat administration. Changes in serum lipids, glucose, insulin, and glucagon levels were measured at different time-points. Expression of liver and adipose tissue metabolic genes were also determined before (t = 0) and after the fat load (t = 240 min). Postprandial dyslipidemia progressively increased with ageing and this could be associated with hepatic ChREBP activity. Interestingly, moderate chronic FR reduced adiposity and avoided excessive postprandial hypertriglyceridemia in 7- and 24-month-old Wistar rats, strengthening the association between postprandial triglyceride levels and adiposity. The 24-month-old rats needed more insulin to maintain postprandial normoglycemia; nevertheless, hyperglycemia occurred at 240 min after fat administration. FR did not alter the fasted serum glucose levels but it markedly decreased glucagon excursion during the OLLT and the postprandial rise of glycemia in the 24-month-old rats, and FGF21 in the 7-month-old Wistar rats. Hence, our results pointed to an important role of FR in postprandial energy metabolism and insulin resistance in ageing. Lastly, our data support the idea that the vWAT might function as an ectopic site for fat deposition in 7-month-old and in 24-month-old Wistar rats that could increase their browning capacity in response to an acute fat load.


Subject(s)
Aging/metabolism , Diet, Fat-Restricted/methods , Dyslipidemias/etiology , Metabolic Syndrome/metabolism , Postprandial Period , Adiposity , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Blood Glucose/analysis , Dietary Fats/metabolism , Disease Models, Animal , Glucagon/blood , Insulin/blood , Lipids/blood , Liver/metabolism , Metabolic Syndrome/etiology , Rats , Rats, Wistar , Triglycerides/blood
19.
J Endocrinol ; 236(1): 43-56, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29109080

ABSTRACT

The role of central leptin in regulating the heart from lipid accumulation in lean leptin-sensitive animals has not been fully elucidated. Herein, we investigated the effects of central leptin infusion on the expression of genes involved in cardiac metabolism and its role in the control of myocardial triacylglyceride (TAG) accumulation in adult Wistar rats. Intracerebroventricular (icv) leptin infusion (0.2 µg/day) for 7 days markedly decreased TAG levels in cardiac tissue. Remarkably, the cardiac anti-steatotic effects of central leptin were associated with the selective upregulation of gene and protein expression of peroxisome proliferator-activated receptor ß/δ (PPARß/δ, encoded by Pparb/d) and their target genes, adipose triglyceride lipase (encoded by Pnpla2, herefater referred to as Atgl), hormone sensitive lipase (encoded by Lipe, herefater referred to as Hsl), pyruvate dehydrogenase kinase 4 (Pdk4) and acyl CoA oxidase 1 (Acox1), involved in myocardial intracellular lipolysis and mitochondrial/peroxisomal fatty acid utilization. Besides, central leptin decreased the expression of stearoyl-CoA deaturase 1 (Scd1) and diacylglycerol acyltransferase 1 (Dgat1) involved in TAG synthesis and increased the CPT-1 independent palmitate oxidation, as an index of peroxisomal ß-oxidation. Finally, the pharmacological inhibition of PPARß/δ decreased the effects on gene expression and cardiac TAG content induced by leptin. These results indicate that leptin, acting at central level, regulates selectively the cardiac expression of PPARß/δ, contributing in this way to regulate the cardiac TAG accumulation in rats, independently of its effects on body weight.


Subject(s)
Heart/drug effects , Leptin/administration & dosage , Lipid Metabolism/drug effects , Myocardium/metabolism , PPAR delta/metabolism , PPAR-beta/metabolism , Animals , Body Weight/drug effects , Glucose/metabolism , Infusions, Intraventricular , Male , Nuclear Receptor Coactivators/metabolism , Oxidation-Reduction , PPAR delta/antagonists & inhibitors , PPAR-beta/antagonists & inhibitors , Palmitates/metabolism , Random Allocation , Rats, Wistar , Sulfones , Thiophenes , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...