Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 7(5): 3164-3178, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38722774

ABSTRACT

Microbial biofilm accumulation poses a serious threat to the environment, presents significant challenges to different industries, and exhibits a large impact on public health. Since there has not been a conclusive answer found despite various efforts, the potential green and economical methods are being focused on, particularly the innovative approaches that employ biochemical agents. In the present study, we propose a bio-nanotechnological method using magnetic cross-linked polyphenol oxidase aggregates (PPO m-CLEA) for inhibition of microbial biofilm including multidrug resistant bacteria. Free PPO solution showed only 55-60% biofilm inhibition, whereas m-CLEA showed 70-75% inhibition, as confirmed through microscopic techniques. The carbohydrate and protein contents in biofilm extracellular polymeric substances (EPSs) were reduced significantly. The m-CLEA demonstrated reusability up to 5 cycles with consistent efficiency in biofilm inhibition. Computational work was also done where molecular docking of PPO with microbial proteins associated with biofilm formation was conducted, resulting in favorable binding scores and inter-residual interactions. Overall, both in vitro and in silico results suggest that PPO interferes with microbial cell attachment and EPS formation, thereby preventing biofilm colonization.


Subject(s)
Anti-Bacterial Agents , Biofilms , Catechol Oxidase , Particle Size , Biofilms/drug effects , Catechol Oxidase/metabolism , Catechol Oxidase/chemistry , Catechol Oxidase/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Materials Testing , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Microbial Sensitivity Tests , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/pharmacology , Molecular Docking Simulation , Escherichia coli/drug effects
2.
Int J Biol Macromol ; 227: 974-985, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36464190

ABSTRACT

Bio-imprinted magnetic cross-linked enzyme aggregates (i-m-CLEAs) of polyphenol oxidase (PPO) obtained from potato peels were prepared using amino-functionalized magnetic nanoparticles. Bio-imprinting is being used to improve the catalytic efficiency and conformational stability of enzymes. For bio-imprinting, PPO was incubated with different imprint/template molecules (catechol, 4-methyl catechol and l-3,4-dihydroxy phenylalanine) before cross-linking with glutaraldehyde. CLEAs imprinted with 4-methyl catechol showed maximum activity as compared with non-bio-imprinted magnetic CLEAs (m-CLEAs). They were further characterized by scanning electron microscopy and confocal microscopy. In bio-imprinted m-CLEAs, half-life (t1/2) of PPO significantly improved (364.74 min) as compared to free PPO (43.58 min) and non-bio-imprinted m-CLEAs (266.54 min). Bio-imprinted m-CLEAs showed excellent thermal and storage stability as well as reusability. The CLEAs preparation were used for the synthesis of l-3,4-dihydroxyphenylalanine (L-dopa, a therapeutic drug to treat neurodegenerative disorder) and a remarkable increase in L-dopa yield (23.5-fold) was obtained as compared to free enzyme. A cost effective and reusable method has been described for the production of L-dopa.


Subject(s)
Enzymes, Immobilized , Levodopa , Cross-Linking Reagents , Temperature , Hydrogen-Ion Concentration , Enzymes, Immobilized/metabolism , Magnetic Phenomena , Enzyme Stability
3.
Int J Biol Macromol ; 186: 780-787, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34280443

ABSTRACT

In the present study different enzymes (α- amylase, trypsin, cellulase, horse-radish peroxidase and pectinex ultra clear) were studied for bacterial biofilm inhibition and Pectinex ultra clear showed best inhibition. So, m-combi-CLEA of Pectinex ultra clear was developed by cross linked enzyme aggregate (CLEA) formation on APTES (3-aminopropyltriethoxysilane) modified iron oxide nanoparticles. Different parameters were optimized and it was observed that 0.4 mg/ml of protein (containing 25 U/mg cellulase activity), 0.5 mg/ml BSA and 10 mM glutaraldehyde when incubated for 3 h gives 100% enzyme activity using ethanol as the precipitant. The CLEA formed were thermally more stable as compared to free enzyme. m-combi-CLEA of Pectinex ultra clear shows 75-78% biofilm inhibition of E. coli and S. aureus. Furthermore, m-combi-CLEA can be reused till 4 cycles with same efficiency. The carbohydrate contents of E. coli biofilm decreased from 64.629 µg to 6.23 µg and for S. aureus biofilm, it decreased from 58.46 µg to 5.52 µg when treated with m-combi CLEA in comparison to untreated biofilms. FTIR, darkfield illumination Fluorescence Microscopy, and Scanning Electron Microscopy was further used for characterization.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Enzymes, Immobilized/pharmacology , Escherichia coli/drug effects , Green Chemistry Technology , Magnetics , Multienzyme Complexes/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Biofilms/growth & development , Enzyme Stability , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Escherichia coli/growth & development , Escherichia coli/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Hydrolysis , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism
4.
Sci Rep ; 10(1): 8531, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32444606

ABSTRACT

The present work describes the in vitro synthesis and characterization of Zinc oxide nanoparticles (ZnO NPs) using an enzyme alpha amylase, the synthesized nanoparticles were used to study their beneficial effect in the growth and development of Brassica juncea. Transmission Electron Microscope (TEM) image reveals the average size of ZnO NPs was 11 nm and X-ray powder diffraction (XRD) suggests nanoparticles were crystalline in nature. In-silico study confirmed lysine, glutamine and tyrosine present in alpha amylase enzyme, plays a crucial role in the reduction of Zinc acetate dihydrate to ZnO NPs. The biochemical parameters and oxidative enzymes of Brassica juncea were compared with ZnO NPs treated plants. The effect of ZnO NPs on the cellular expression of metal tolerant protein (BjMTP) and cation efflux transporter gene (BjCET2) was also studied. The results indicate that nanoparticles can be used as a replacement for traditional harmful chemical fertilizers.


Subject(s)
Gene Expression Regulation, Plant/drug effects , Metal Nanoparticles/administration & dosage , Mustard Plant/growth & development , Plant Leaves/growth & development , Plant Proteins/metabolism , Zinc Oxide/chemistry , Zinc Oxide/metabolism , Metal Nanoparticles/chemistry , Microscopy, Electron, Transmission , Mustard Plant/drug effects , Mustard Plant/metabolism , Mustard Plant/ultrastructure , Oxidation-Reduction , Plant Leaves/drug effects , Plant Leaves/metabolism
5.
Environ Sci Pollut Res Int ; 27(24): 30081-30092, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32447731

ABSTRACT

In the present work, polyphenol oxidase (PPO) enzyme was purified from potato peel using three-phase partitioning (TPP). In this method, ammonium sulfate and t-butanol were added to precipitate the protein/enzyme from the crude aqueous extract. The PPO enzyme precipitated as an interfacial layer between the upper organic solvent phase and lower aqueous phase. Different purification parameters such as crude extract to t-butanol ratio, ammonium sulfate concentration, temperature, and pH were optimized for TPP. About 69% PPO enzyme activity was recovered in a single step of TPP with 9.2-fold purification. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile of partially purified PPO enzyme showed molecular weight in the range of about 30-40 kDa. The PPO enzyme was then investigated for the fabrication of a portable, cost-effective, and disposable colorimetric paper biosensor or colorimetric "test strips" for detection of phenolic contaminants. PPO and a chromophore reagent (3-methyl-2-benzothiazolinone hydrazine) generated a range of color in the presence of phenolic compounds (catechol, phenol, p-cresol, 4-methyl catechol) within 15 min, and limit of detection was found to be 0.5 µM. The biosensor worked in a broad range of pH from 3 to 11 and showed good storage stability at 25 °C and 4 °C for 30 days with no significant loss of activity. The biosensor was also applied on environmental water and urine sample to show reliability of biosensor.


Subject(s)
Biosensing Techniques , Catechol Oxidase , Phenols , Reproducibility of Results , Water
6.
Environ Sci Pollut Res Int ; 26(22): 23070-23081, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31187375

ABSTRACT

Water contaminants like pathogenic microbes and organic pollutants pose a serious threat to human and aquatic life forms; thus, there is an urgent need to develop a sustainable and affordable water treatment technology. Nanomaterials especially metal nanoparticles have extensive applications in wastewater treatment, but the recovery and aggregation of nanoparticles in solution is a major limitation. In the present work, green synthesized silver nanoparticles were covalently immobilized on a glass surface to prevent aggregation of nanoparticles and to enhance their applicability. Fourier transform infrared (FTIR) of silver nanoparticle (AgNP)-coated glass shows peaks of Si-O-Si, Si-O-C, and Ag-O at 1075 cm-1, 780 cm-1, and 608 cm-1 respectively which confirms the immobilization/conjugation of nanomaterial on glass surface. The surface morphology of immobilized AgNP was studied using scanning electron microscopy (SEM) which reveals nanoparticles are spherical and uniformly distributed on glass surface. The AgNP-coated glass was used for the removal of textile dyes in solution; the result indicates approximately 95% of textile dyes were removed after 5 h of treatment. Removal of microbial contaminants from Yamuna River was studied by optical density analysis and confirmed by fluorescence dye staining. The AgNP-coated glass was also studied for their reusability and the data indicates 50% removal of microbes up to the 5th cycle. To further enhance the applicability, the inhibition of bacterial biofilms were analyzed by dark-field illumination with a fluorescence microscope. Thus AgNP-coated glass can be used in the development of food/water storage containers and in textile industries.


Subject(s)
Biofilms/drug effects , Metal Nanoparticles/analysis , Silver/chemistry , Wastewater/analysis , Water Pollution/analysis , Glass , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Silver/pharmacology
7.
Int J Biol Macromol ; 93(Pt A): 66-74, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27581559

ABSTRACT

In the present work, we describe a simple procedure for the biosynthesis of nanosilver and gold by the reduction of silver nitrate and auric chloride respectively using a nanobiocatalyst. The nanobiocatalyst was prepared by covalent coupling of alpha amylase on (3-aminopropyl)triethoxysilane (APTES) modified iron oxide magnetic nanoparticles. The nanobiocatalyst retains 77% of its activity as compared to free alpha amylase. The nanobiocatalyst can be used up to three consecutive cycles for the synthesis of nano silver and gold. The biosynthesized nanoparticles after each cycle were characterized by UV-vis spectrophotometer, Dynamic Light Spectroscopy (DLS), Transmission Electron Microscope (TEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Silver and gold nanoparticles of same morphology and dimensions were formed in each cycle. The procedure for synthesis of nanoparticles using an immobilized enzyme is eco-friendly and can be used repeatedly.


Subject(s)
Gold/chemistry , Magnetite Nanoparticles/chemistry , Silver/chemistry , Biocatalysis , Enzymes, Immobilized , Particle Size , Recycling , alpha-Amylases/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...