Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(8): e0272984, 2022.
Article in English | MEDLINE | ID: mdl-35960723

ABSTRACT

INTRODUCTION: Ventilatory efficiency (VE/VCO2 slope) has been shown superior to peak oxygen consumption (VO2) for prediction of post-operative pulmonary complications in patients undergoing thoracotomy. VE/VCO2 slope is determined by ventilatory drive and ventilation/perfusion mismatch whereas VO2 is related to cardiac output and arteriovenous oxygen difference. We hypothesized pre-operative VO2 predicts post-operative cardiovascular complications in patients undergoing lung resection. METHODS: Lung resection candidates from a published study were evaluated by post-hoc analysis. All of the patients underwent preoperative cardiopulmonary exercise testing. Post-operative cardiovascular complications were assessed during the first 30 post-operative days or hospital stay. One-way analysis of variance or the Kruskal-Wallis test, and multivariate logistic regression were used for statistical analysis and data summarized as median (IQR). RESULTS: Of 353 subjects, 30 (9%) developed pulmonary complications only (excluded from further analysis), while 78 subjects (22%) developed cardiovascular complications and were divided into two groups for analysis: cardiovascular only (n = 49) and cardiovascular with pulmonary complications (n = 29). Compared to patients without complications (n = 245), peak VO2 was significantly lower in the cardiovascular with pulmonary complications group [19.9 ml/kg/min (16.5-25) vs. 16.3 ml/kg/min (15-20.3); P<0.01] but not in the cardiovascular only complications group [19.9 ml/kg/min (16.5-25) vs 19.0 ml/kg/min (16-23.1); P = 0.18]. In contrast, VE/VCO2 slope was significantly higher in both cardiovascular only [29 (25-33) vs. 31 (27-37); P = 0.05] and cardiovascular with pulmonary complication groups [29 (25-33) vs. 37 (34-42); P<0.01)]. Logistic regression analysis showed VE/VCO2 slope [OR = 1.06; 95%CI (1.01-1.11); P = 0.01; AUC = 0.74], but not peak VO2 to be independently associated with post-operative cardiovascular complications. CONCLUSION: VE/VCO2 slope is superior to peak VO2 for prediction of post-operative cardiovascular complications in lung resection candidates.


Subject(s)
Heart Failure , Oxygen Consumption , Exercise Test , Humans , Lung/surgery , Oxygen , Prognosis
2.
Med Phys ; 36(12): 5604-11, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20095273

ABSTRACT

PURPOSE: The purpose of this study was to analyze the relationship between prostate, bladder, and rectum volumes on treatment planning CT day and prostate shifts in the XYZ directions on treatment days. METHODS: Prostate, seminal vesicles, bladder, and rectum were contoured on CT images obtained in supine position. Intensity modulated radiation therapy plans was prepared. Contours were exported to BAT-ultrasound imaging system. Patients were positioned on the couch using skin marks. An ultrasound probe was used to obtain ultrasound images of prostate, bladder, and rectum, which were aligned with CT images. Couch shifts in the XYZ directions as recommended by BAT system were made and recorded. 4698 couch shifts for 42 patients were analyzed to study the correlations between interfraction prostate shifts vs bladder, rectum, and prostate volumes on planning CT. RESULTS: Mean and range of volumes (cc): Bladder: 179 (42-582), rectum: 108 (28-223), and prostate: 55 (21-154). Mean systematic prostate shifts were (cm, +/-SD) right and left lateral: -0.047 +/- 0.16 (-0.361-0.251), anterior and posterior: 0.14 0.3 (-0.466-0.669), and superior and inferior: 0.19 +/- 0.26 (-0.342-0.633). Bladder volume was not correlated with lateral, anterior/posterior, and superior/inferior prostate shifts (P > 0.2). Rectal volume was correlated with anterior/posterior (P < 0.001) but not with lateral and superior/inferior prostate shifts (P > 0.2). The smaller the rectal volume or cross sectional area, the larger was the prostate shift anteriorly and vice versa (P < 0.001). Prostate volume was correlated with superior/inferior (P < 0.05) but not with lateral and anterior/posterior prostate shifts (P > 0.2). The smaller the prostate volume, the larger was prostate shift superiorly and vice versa (P < 0.05). CONCLUSIONS: Prostate and rectal volumes, but not bladder volumes, on treatment planning CT influenced prostate position on treatment fractions. Daily image-guided adoptive radiotherapy would be required for patients with distended or empty rectum on planning CT to reduce rectal toxicity in the case of empty rectum and to minimize geometric miss of prostate.


Subject(s)
Dose Fractionation, Radiation , Movement , Prostate/anatomy & histology , Prostate/physiology , Radiotherapy Planning, Computer-Assisted , Rectum/anatomy & histology , Urinary Bladder/anatomy & histology , Humans , Male , Organ Size , Prostate/diagnostic imaging , Radiotherapy, Intensity-Modulated , Rectum/diagnostic imaging , Time Factors , Tomography, X-Ray Computed , Ultrasonography , Urinary Bladder/diagnostic imaging
3.
Technol Cancer Res Treat ; 5(5): 503-11, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16981793

ABSTRACT

We treat prostate and seminal vesicles (SV) to 45 Gy in 25 fractions (course 1) and boost prostate to 81 Gy in 20 more fractions (course 2) with Intensity Modulated Radiation Therapy (IMRT). This two-course IMRT with 45 fractions delivered a non-uniform dose to SV and required two plans and two QA procedures. We used Linear Quadratic (LQ) model to develop a single course IMRT plan to treat SV to a uniform dose, which has the same biological effective dose (BED) as that of 45 Gy in 25 fractions and prostate to 81 Gy, in 45 fractions. Single course IMRT plans were compared with two-course IMRT plans, retrospectively for 14 patients. With two-course IMRT, prescription to prostate and SV was 45 Gy in 25 fractions and to prostate only was 36 Gy in 20 fractions, at 1.8 Gy/fraction. With 45-fraction single course IMRT plan, prescription to prostate was 81 Gy and to SV was 52 or 56 Gy for a alpha/beta of 1 and 3, respectively. 52 Gy delivered in 45 fractions has the same BED of 72 Gy3 as that of delivering 45 Gy in 25 fractions, and is called Matched Effective Dose (MED). LQ model was used to calculate the BED and MED to SV for alpha/beta values of 1-10. Comparison between two-course and single course IMRT plans was in terms of MUs, dose-max, and dose volume constraints (DVC). DVC were: 95% PTV to be covered by at least 95% of prescription dose; and 70, 50, and 30% of bladder and rectum should not receive more than 40, 60, and 70% of 81 Gy. SV Volumes ranged from 2.9-30 cc. With two-course IMRT plans, mean dose to SV was non-uniform and varied between patients by 48% (54 to 80 Gy). With single-course IMRT plan, mean dose to SV was more uniform and varied between patients by only 9.6% (58.2 to 63.8 Gy), to deliver MED of 56 Gy for alpha/beta - 1. Single course IMRT plan MUs were slightly larger than those for two-course IMRT plans, but within the range seen for two-course plans (549-959 MUs, n=51). Dose max for single-course plans were similar to two-course plans. Doses to PTV, rectum and bladder with single course plans were as per DVC and comparable to two-course plans. Single course IMRT plan reduces IMRT planning and QA time to half.


Subject(s)
Adenocarcinoma/radiotherapy , Prostate/radiation effects , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Seminal Vesicles/radiation effects , Humans , Male , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...