Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732675

ABSTRACT

Pervaporation is considered the most promising technology for dehydration of bioalcohols, attracting increasing attention as a renewable energy source. In this regard, the development of stable and effective membranes is required. In this study, highly efficient membranes for the enhanced pervaporation dehydration of ethanol were developed by modification of sodium alginate (SA) with a polyethylenimine (PEI) forming polyelectrolyte complex (PEC) and graphene oxide (GO). The effect of modifications with GO or/and PEI on the structure, physicochemical, and transport characteristics of dense membranes was studied. The formation of a PEC by ionic cross-linking and its interaction with GO led to changes in membrane structure, confirmed by spectroscopic and microscopic methods. The physicochemical properties of membranes were investigated by a thermogravimetric analysis, a differential scanning calorimetry, and measurements of contact angles. The theoretical consideration using computational methods showed favorable hydrogen bonding interactions between GO, PEI, and water, which caused improved membrane performance. To increase permeability, supported membranes without treatment and cross-linked were developed by the deposition of a thin dense layer from the optimal PEC/GO (2.5%) composite onto a developed porous substrate from polyacrylonitrile. The cross-linked supported membrane demonstrated more than two times increased permeation flux, higher selectivity (above 99.7 wt.% water in the permeate) and stability for separating diluted mixtures compared to the dense pristine SA membrane.

2.
Materials (Basel) ; 16(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37512290

ABSTRACT

Glass containing chromium is a promising material for use in various modern fields of application (laser technology, optoelectronic devices, and luminescent resources). Chromium oxides are well-known nucleating agents that can cause crystallization. One of the most commonly observed crystalline phases in silicate glasses is cristobalite, which lowers their mechanical strength, leading to the destruction of the material. The objective of this investigation was to study in detail the crystallization of cristobalite in sodium borosilicate glass in the presence of 2 mol% Cr2O3, depending on the thermal history of the glass. The glass was studied using XRD, SEM, EPR, FTIR-spectroscopy, XPS, and solid-state NMR. Eskolaite, α-Cr2O3, which had crystallized in this glass, stimulated the bulk crystallization of cristobalite at 550 °C after isothermally treating it for 72 h, due to the phase-separated structure of the glass with its interpenetrating phase morphology. Polytypism, resulting in the incorporation of alkalis into the cristobalite structure, was observed. Cr2O3 causes the catalytic crystallization of cristobalite at an extremely low temperature, which is at lower concentrations and temperatures than in glass containing Fe2O3 with a similar composition. The crystal growth rate and the incubation time for the crystallization of cristobalite were roughly estimated.

3.
Molecules ; 29(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38202667

ABSTRACT

We investigate vibrations of the pyridinium cation PyH+ = C5H5NH+ in one-dimensional lead halide perovskites PyPbX3 and pyridinium halide salts PyHX (X- = I-, Br-), combining infrared absorption and Raman scattering methods at room temperature. Internal vibrations of the cation were assigned based on density functional theory modeling. Some of the vibrational bands are sensitive to perovskite or the salt environment in the solid state, while halide substitution has only a minor effect on them. These findings have been confirmed by 1H, 13C and 207Pb solid-state nuclear magnetic resonance (NMR) experiments. Narrower vibrational bands in perovskites indicate less disorder in these materials. The splitting of NH-group vibrational bands in perovskites can be rationalized the presence of nonequivalent crystal sites for cations or by more exotic phenomena such as quantum tunneling transition between two molecular orientations. We have shown how organic cations in hybrid organic-inorganic crystals could be used as spectators of the crystalline environment that affects their internal vibrations.

4.
Plants (Basel) ; 11(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36559591

ABSTRACT

Fires are a naturally cyclical factor regulating ecosystems' function and forming new postfire ecosystems. Peat soils are unique archives that store information about ecological and climatic changes and the history of past fires during the Holocene. The paper presents a reconstruction of the dynamics of fires in the subzone of the middle taiga of Western Siberia in the Holocene. Data on fires were obtained based on the results of a study of the content of macroscopic coal particles and radiocarbon dating. The effect of fires on soil organic matter (SOM) was estimated using 13C NMR spectroscopy and the content of polyaromatic hydrocarbons (PAHs). It is shown that throughout the Holocene, the peatlands studied were prone to fires. The conducted analyses show that the maximum content of charcoal particles is observed in the Atlantic (~9100−5800 cal. B.P.) and Subatlantic (~3100 cal. B.P. to the present) periods. The high correlation dependence of the content of coals with the content of PAHs (r = 0.56, p < 0.05) and aromatic structures of SOM (r = 0.61, p < 0.05) in peat horizons is shown, which can characterize these parameters as a reliable marker of pyrogenesis.

5.
Membranes (Basel) ; 12(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36135851

ABSTRACT

Purification and concentration of bioalcohols is gaining new status due to their use as a promising alternative liquid biofuel. In this work, novel high-performance asymmetric membranes based on a block copolymer (BCP) synthesized from polydimethylsiloxane (PDMS) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) were developed for enhanced pervaporation dehydration of ethanol. Improvement in dehydration performance was achieved by obtaining BCP membranes with a "non-perforated" porous structure and through surface and bulk modifications with graphene oxide (GO). Formation of the BCP was confirmed by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies. The changes to morphology and physicochemical properties of the developed BCP and BCP/GO membranes were studied by scanning electron (SEM) and atomic force (AFM) microscopies, thermogravimetric analysis (TGA) and contact angle measurements. Transport properties of the developed membranes were evaluated by the pervaporation dehydration of ethanol over a wide concentration range (4.4-70 wt.% water) at 22 °C. The BCP (PDMS:PPO:2,4-diisocyanatotoluene = 41:58:1 wt.% composition) membrane modified with 0.7 wt.% GO demonstrated optimal transport characteristics: 80-90 g/(m2h) permeation flux with high selectivity (76.8-98.8 wt.% water in the permeate, separation factor of 72-34) and pervaporation separation index (PSI) of 5.5-2.9.

6.
Materials (Basel) ; 15(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35329455

ABSTRACT

The hydration kinetics of Portland-limestone cement pastes with organic additives in the form of acetic acid and sodium acetate were studied by using solid-state 13C, 27Al and 29Si NMR spectroscopy. The evolution of the relative content of various phases was monitored over the period of one month: amorphous and crystalline calcite (in 13C spectra), ettringite, aluminum in C-S-H gel, calcium aluminates and calcium hydroaluminates (in 27Al spectra), as well as alite, belite and silicon in C-S-H gel (in 29Si spectra). The retarding effect of the additives on cement hydration at early age was demonstrated. We show that the kinetics of phase assemblage formation is influenced by the acetate ion adsorption on the surface of the anhydrous cement components and hydrated phases. The kinetics of formation of ettringite in the cement paste, depending on the addition of acetic and or sodium acetate, is discussed in the context of potential thaumasite sulfate attack.

7.
Polymers (Basel) ; 14(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35215603

ABSTRACT

Ethylene glycol (EG) is widely used in various economic and industrial fields. The demand for its efficient separation and recovery from water is constantly growing. To improve the pervaporation characteristics of a poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) membrane in dehydration of ethylene glycol, the modification with graphene oxide (GO) nanoparticles was used. The effects of the introduction of various GO quantities into the PPO matrix on the structure and physicochemical properties were studied by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies, scanning electron (SEM) and atomic force (AFM) microscopies, thermogravimetric analysis (TGA), swelling experiments, and contact angle measurements. Two types of membranes based on PPO and PPO/GO composite were developed: dense membranes and supported membranes on a fluoroplast substrate (MFFC). Transport properties of the developed membranes were evaluated in the pervaporation dehydration of EG in a wide concentration range (10-90 wt.% and 10-30 wt.% water for the dense and supported membranes, respectively). The supported PPO/GO(0.7%)/MFFC membrane demonstrated the best transport properties in pervaporation dehydration of EG (10-30 wt.% water) at 22 °C: permeation flux ca. 15 times higher compared to dense PPO membrane-180-230 g/(m2·h)), 99.8-99.6 wt.% water in the permeate. The membrane is suitable for the promising industrial application.

8.
Biomedicines ; 9(11)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34829821

ABSTRACT

Despite multimodal approaches for the treatment of multiforme glioblastoma (GBM) advances in outcome have been very modest indicating the necessity of novel diagnostic and therapeutic strategies. Currently, mesenchymal stem cells (MSCs) represent a promising platform for cell-based cancer therapies because of their tumor-tropism, low immunogenicity, easy accessibility, isolation procedure, and culturing. In the present study, we assessed the tumor-tropism and biodistribution of the superparamagnetic iron oxide nanoparticle (SPION)-labeled MSCs in the orthotopic model of C6 glioblastoma in Wistar rats. As shown in in vitro studies employing confocal microscopy, high-content quantitative image cytometer, and xCelligence system MSCs exhibit a high migratory capacity towards C6 glioblastoma cells. Intravenous administration of SPION-labeled MSCs in vivo resulted in intratumoral accumulation of the tagged cells in the tumor tissues that in turn significantly enhanced the contrast of the tumor when high-field magnetic resonance imaging was performed. Subsequent biodistribution studies employing highly sensitive nonlinear magnetic response measurements (NLR-M2) supported by histological analysis confirm the retention of MSCs in the glioblastoma. In conclusion, MSCs due to their tumor-tropism could be employed as a drug-delivery platform for future theranostic approaches.

9.
Polymers (Basel) ; 13(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668120

ABSTRACT

Membrane methods, especially pervaporation, are quickly growing up. In line with that, effective membrane materials based on biopolymers are required for the industrially significant mixtures separation. To essentially improve membrane transport characteristics, the application of the surface or/and bulk modifications can be carried out. In the present study, novel dense and supported membranes based on hydroxyethyl cellulose (HEC)/sodium alginate (SA) were developed for pervaporation dehydration of isopropanol using several approaches: (1) the selection of the optimal ratio of polymers, (2) the introduction of fullerenol in blend polymer matrix, (3) the selection of the optimal cross-linking agent for the membranes, (4) the application of layer-by-layer deposition of polyelectrolytes on supported membrane surface (poly(sodium 4-styrenesulfonate) (PSS)/poly(allylamine hydrochloride) (PAH) and PSS/SA). Structural and physicochemical characteristics of the membranes were analyzed by different methods. A cross-linked supported membrane based on HEC/SA/fullerenol (5%) composite possessed the following transport characteristics in pervaporation dehydration of isopropanol (12-50 wt.% water): 0.42-1.72 kg/(m2h) permeation flux, and 77.8-99.99 wt.% water content in the permeate. The surface modification of this membrane with 5 bilayers of PSS/PAH and PSS/SA resulted in the increase of permeation flux up to 0.47-3.0 and 0.46-1.9 kg/(m2h), respectively, with lower selectivity.

10.
Environ Geochem Health ; 43(1): 127-138, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32761412

ABSTRACT

Humic substances with or without chemical modification can serve as environmentally benign and inexpensive adsorbents of potentially toxic trace elements (PTTEs) in the environment. The present study investigated the absorption of Pb, Zn, Cu and Ni by natural and potassium persulfate (K2S2O8) modified humic acids (HAs) isolated from a lowland peat through batch experiments. The adsorption of the studied PTTEs on the natural HA was satisfactorily described by the Langmuir isotherm model with maximum monolayer adsorption capacities of 318.2, 286.5, 225.0 and 136.8 mmol/kg for Pb, Cu, Zn and Ni, respectively. A thorough characterization of the natural and modified HA using 13C nuclear magnetic resonance spectroscopy demonstrated that the chemical modification of natural HA with K2S2O8 led to an increase in the content of carboxyl groups, and ketone and quinoid fragments in the HA structure. Consequently, the modified HA absorbed 16.3, 14.2, 10.6 and 6.9% more Pb, Ni, Zn and Cu, respectively, than the original natural HA. The isotherm data modeling together with adsorbent characterization suggested that the adsorption of PTTEs was controlled mainly by chemisorption mechanisms where inner-sphere complexations of metal ions with HA functional groups took place.


Subject(s)
Environmental Pollutants/chemistry , Environmental Restoration and Remediation/methods , Humic Substances , Trace Elements/chemistry , Adsorption , Humic Substances/analysis , Models, Theoretical , Potassium Compounds/chemistry , Soil/chemistry , Sulfates/chemistry
11.
Molecules ; 25(22)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182612

ABSTRACT

The protonated perovskite-like titanate H2La2Ti3O10 has been used to produce organic-inorganic hybrids with simple organic molecules: methylamine, methanol, monoethanolamine, and n-butylamine. The optimal pathways for the preparation of such hybrids are summarized. Solid-state NMR, combined with thermal analysis, Raman, and IR spectroscopy, has been applied to determine the bonding type in the obtained organic-inorganic hybrids. It has been found that, in the methanolic hybrid, the organic residues are covalently bound to the inorganic matrix. In contrast, in the methylamine and n-butylamine hybrids, the organic molecules are intercalated into the inorganic matrix in cationic forms. The structure of the monoethanolamine hybrid is composite and includes both the covalently bound and intercalated organic species.


Subject(s)
Chemistry Techniques, Synthetic/methods , Intercalating Agents/pharmacology , Lanthanoid Series Elements/chemistry , Magnetic Resonance Spectroscopy/methods , Oxygen/chemistry , Titanium/chemistry , Butylamines/chemistry , Calcium Compounds/chemistry , Chemistry, Organic/methods , Hot Temperature , Methanol/chemistry , Methylamines/chemistry , Microscopy, Electron, Scanning , Oxides/chemistry , Spectrophotometry, Infrared , Spectrum Analysis, Raman , Temperature , Thermogravimetry , X-Ray Diffraction
12.
Polymers (Basel) ; 12(4)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283648

ABSTRACT

Novel mixed matrix dense and supported membranes based on biopolymer sodium alginate (SA) modified by fullerenol were developed. Two kinds of SA-fullerenol membranes were investigated: untreated and cross-linked by immersing the dry membranes in 1.25 wt % calcium chloride (CaCl2) in water for 10 min. The structural and physicochemical characteristics features of the SA-fullerenol composite were investigated by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopic methods, scanning electron (SEM) and atomic force (AFM) microscopies, thermogravimetric analysis (TGA), and swelling experiments. Transport properties were evaluated in pervaporation dehydration of isopropanol in a wide concentration range. It was found that the developed supported cross-linked SA-5/PANCaCl2 membrane (modified by 5 wt % fullerenol) possessed the best transport properties (the highest permeation fluxes 0.64-2.9 kg/(m2 h) and separation factors 26-73,326) for the pervaporation separation of the water-isopropanol mixture in the wide concentration range (12-90 wt % water) at 22 °C and is suitable for the promising application in industry.

13.
Mater Sci Eng C Mater Biol Appl ; 111: 110774, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32279736

ABSTRACT

In this work, metal-organic frameworks on the basis of γ-cyclodextrin (γCD-MOF) were proposed as carriers for methotrexate (MTX) which is widely used as chemotherapy agent and immune system suppressant. The synthesized γCD-MOF was loaded with MTX by impregnation and co-crystallization. The obtained composites were characterized using powder X-ray diffraction, N2 adsorption/desorption, FTIR spectroscopy, solid-state 13C MAS CP/TOSS NMR and scanning electron microscopy. Pharmaceutically relevant properties of MTX alone and loaded in γCD-MOF were investigated in vitro and in vivo. The faster dissolution of MTX incorporated in γCD-MOF was demonstrated in blank buffers and biorelevant media (FaSSGF, FaSSIF) simulating the gastrointestinal fluids. Inclusion complex formation of MTX with γ-CD enhances the drug dissolution rate and, at the same time, slightly decreases the drug permeability through the lipophilic membrane. The in vivo experiments showed the improved pharmacokinetic parameters of MTX loaded in γCD-MOF.


Subject(s)
Drug Carriers/chemistry , Metal-Organic Frameworks/chemistry , Methotrexate/chemistry , gamma-Cyclodextrins/chemistry , Adsorption , Animals , Drug Design , Drug Liberation , Female , Half-Life , Methotrexate/pharmacokinetics , Microscopy, Electron, Scanning , Permeability , Rats , Spectroscopy, Fourier Transform Infrared
14.
Dalton Trans ; 49(10): 3155-3163, 2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32083636

ABSTRACT

A series of Cu(i) halide complexes derived from tris(2-pyridyl)phosphine (Py3P), [Cu2(Py3P)2X2] (X = Cl, Br, I), have been synthesized by a straightforward reaction in solution or through a mechanochemical route. At room temperature, the solid complexes exhibit bright dual-mode photoluminescence (λmax = 520-550 nm, τ = 14.5-20.0 µs, and ΦPL ≈ 53%), expressed by thermally activated delayed fluorescence (TADF) combined with phosphorescence (PH), originating from 1(M + X)LCT and 3(M + X)LCT excited states, respectively. Remarkably, the balance of these radiative processes at 300 K is regulated by halogen atom nature, switching from TADF-assisted phosphorescence to PH-admixed TADF. The emission of [Cu2(Py3P)2Cl2] at 300 K is largely contributed by PH (73%) admixed with the TADF fraction (27%) and [Cu2(Py3P)2Br2] also emits mainly PH (65%) admixed with the larger TADF fraction (35%). Meanwhile, for [Cu2(Py3P)2I2], the TADF channel becomes dominating (61%) and PH contribution drops to 39%. The photophysical study corroborated by (TD)DFT computations has revealed that this effect arises mainly from the narrowing of the ΔE(S1 - T1) gap of the [Cu2(Py3P)2X2] complexes in the order Cl (1500 cm-1) > Br (1250 cm-1) > I (1000 cm-1) which facilitates the TADF pathway and suppresses PH in the same order.

15.
Small ; 15(13): e1900205, 2019 03.
Article in English | MEDLINE | ID: mdl-30828968

ABSTRACT

Functionalized superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as potential clinical tools for cancer theranostics. Membrane-bound 70 kDa heat shock protein (mHsp70) is ubiquitously expressed on the cell membrane of various tumor types but not normal cells and therefore provides a tumor-specific target. The serine protease granzyme B (GrB) that is produced as an effector molecule by activated T and NK cells has been shown to specifically target mHsp70 on tumor cells. Following binding to Hsp70, GrB is rapidly internalized into tumor cells. Herein, it is demonstrated that GrB functionalized SPIONs act as a contrast enhancement agent for magnetic resonance imaging and induce specific tumor cell apoptosis. Combinatorial regimens employing stereotactic radiotherapy and/or magnetic targeting are found to further enhance the therapeutic efficacy of GrB-SPIONs in different tumor mouse models.


Subject(s)
Cell Membrane/metabolism , Granzymes/metabolism , HSP70 Heat-Shock Proteins/metabolism , Nanoparticles/chemistry , Neoplasms/diagnosis , Neoplasms/therapy , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Combined Modality Therapy , Dextrans/chemistry , Female , Humans , Magnetic Resonance Imaging , Magnetite Nanoparticles/chemistry , Male , Mice, Inbred C57BL , Mice, SCID , Neoplasms/diagnostic imaging , Rats, Wistar , Theranostic Nanomedicine
16.
J Org Chem ; 83(17): 9756-9773, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30062896

ABSTRACT

Click-like condensation of boronic acids with specifically designed triols (boronate-triol coupling) produces stable diamantane adducts in aqueous medium, which can be controllably cleaved to initial components under acidic conditions or by using boric acid as a chemical trigger. This novel "click-declick" strategy allows for the creation of temporary covalent connections between two or more modular units, which was demonstrated by the synthesis of new fluorophore-labeled natural molecules (peptides, steroids), supramolecular assemblies, modified polymers, boronic acid scavengers, solid-supported organocatalysts, biodegradable COF-like materials, and dynamic combinatorial libraries.

17.
Int J Nanomedicine ; 13: 1471-1482, 2018.
Article in English | MEDLINE | ID: mdl-29559776

ABSTRACT

BACKGROUND: Glioblastoma is the most devastating primary brain tumor of the central nervous system in adults. Magnetic nanocarriers may help not only for a targeted delivery of chemotherapeutic agents into the tumor site but also provide contrast enhancing properties for diagnostics using magnetic resonance imaging (MRI). METHODS: Synthesized hybrid chitosan-dextran superparamagnetic nanoparticles (CS-DX-SPIONs) were characterized using transmission electron microscopy (TEM) and relaxometry studies. Nonlinear magnetic response measurements were employed for confirming the superparamagnetic state of particles. Following in vitro analysis of nanoparticles cellular uptake tumor targeting was assessed in the model of the orthotopic glioma in rodents. RESULTS: CS-DX-SPIONs nanoparticles showed a uniform diameter of 55 nm under TEM and superparamagentic characteristics as determined by T1 (spin-lattice relaxation time) and T2 (spin-spin relaxation time) proton relaxation times. Application of the chitosan increased the charge from +8.9 to +19.3 mV of the dextran-based SPIONs. The nonlinear magnetic response at second harmonic of CS-DX-SPIONs following the slow change of stationary magnetic fields with very low hysteresis evidenced superparamagnetic state of particles at ambient temperatures. Confocal microscopy and flow cytometry studies showed an enhanced internalization of the chitosan-based nanoparticles in U87, C6 glioma and HeLa cells as compared to dextran-coated particles. Cytotoxicity assay demonstrated acceptable toxicity profile of the synthesized nanoparticles up to a concentration of 10 µg/ml. Intravenously administered CS-DX-SPIONs in orthotopic C6 gliomas in rats accumulated in the tumor site as shown by high-resolution MRI (11.0 T). Retention of nanoparticles resulted in a significant contrast enhancement of the tumor image that was accompanied with a dramatic drop in T2 values (P<0.001). Subsequent histological studies proved the accumulation of the nanoparticles inside glioblastoma cells. CONCLUSION: Hybrid chitosan-dextran magnetic particles demonstrated high MR contrast enhancing properties for the delineation of the brain tumor. Due to a significant retention of the particles in the tumor an application of the CS-DX-SPIONs could not only improve the tumor imaging but also could allow a targeted delivery of chemotherapeutic agents.


Subject(s)
Brain Neoplasms/drug therapy , Chitosan/chemistry , Ferric Compounds/chemistry , Glioblastoma/drug therapy , Magnetite Nanoparticles/chemistry , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Brain Neoplasms/pathology , Cell Communication , Glioblastoma/pathology , HeLa Cells , Humans , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/administration & dosage , Magnetite Nanoparticles/ultrastructure , Male , Rats, Wistar
18.
ACS Biomater Sci Eng ; 4(2): 491-501, 2018 Feb 12.
Article in English | MEDLINE | ID: mdl-33418739

ABSTRACT

The synthesized 1,2,4-thiadiazole derivative displaying biological activity has low aqueous solubility and dissolution rate. Novel oral formulations of thiadiazole with ß- and hydroxypropyl-ß-cyclodextrins were obtained by grinding and freeze-drying methods with the purpose to improve the aqueous solubility. Complex formation of 1,2,4-thiadiazole derivative with cyclodextrins was confirmed by means of solid-state 13C MAS CP/TOSS NMR. Solubility, dissolution rate and permeability of the solid inclusion complexes were evaluated in different biorelevant media (SGF, FaSSGF, FaSSIF) simulating the conditions in the gastrointestinal tract. It was demonstrated that the content of biorelevant media affects the properties of the inclusion complexes. In particular, solubilizing effect of cyclodextrins became less pronounced when the micelles of taurocholic acid and lecithin are formed in the dissolution media. The inclusion of thiadiazole into cyclodextrin cavity is in competition with its partitioning into the micelles and this should be taken into account when the in vivo behavior is predicted. The results of in vitro and in vivo experiments were found to be in agreement and showed the highest solubility, dissolution rate and bioavailability of the freeze-dried complexes of thiadiazole with hydroxypropyl-ß-cyclodextrin. These complexes can be proposed as more effective dosage forms for oral administration.

SELECTION OF CITATIONS
SEARCH DETAIL
...