Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Chem Biol Drug Des ; 104(1): e14590, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39039615

ABSTRACT

Hydrazones display an interesting profile of biological activities, which includes mainly antimicrobial and antiproliferative properties. Hydrazones also play an important role in the synthesis of heterocyclic rings and in coordination chemistry. Currently, the synthesis of complexes of hydrazones with transition metals is quite frequently reported in the scientific literature. The interest in this topic is largely due to diverse biological activities of the metal complexes of hydrazones that in some cases are much more effective than hydrazones themselves. This review focuses on the complexes of hydrazones with transition metals which display antibacterial, antitubercular, antifungal and anticancer activities. In the following subchapters devoted to a given activity, an attempt has been made to present the most active complexes of hydrazones, their trends in their activity and application in medicinal chemistry. The paper presents the literature data from 2009 to 2023. This review constitutes a useful guide for the researchers who intend to synthesize and investigate complexes of hydrazones in terms of their antimicrobial and anticancer activities.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Coordination Complexes , Hydrazones , Transition Elements , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Transition Elements/chemistry , Transition Elements/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Neoplasms/drug therapy
2.
Molecules ; 28(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37687189

ABSTRACT

A series of novel 3D coordination polymers [Ln2(Qdca)3(H2O)x]·yH2O (x = 3 or 4, y = 0-4) assembled from selected lanthanide ions (Ln(III) = Nd, Eu, Tb, and Er) and a non-explored quinoline-2,4-dicarboxylate building block (Qdca2- = C11H5NO42-) were prepared under hydrothermal conditions at temperatures of 100, 120, and 150 °C. Generally, an increase in synthesis temperature resulted in structural transformations and the formation of more hydrated compounds. The metal complexes were characterized by elemental analysis, single-crystal and powder X-ray diffraction methods, thermal analysis (TG-DSC), ATR/FTIR, UV/Vis, and luminescence spectroscopy. The structural variety of three-dimensional coordination polymers can be ascribed to the temperature effect, which enforces the diversity of quinoline-2,4-dicarboxylate ligand denticity and conformation. The Qdca2- ligand only behaves as a bridging or bridging-chelating building block binding two to five metal centers with seven different coordination modes arising mainly from different carboxylate group coordination types. The presence of water molecules in the structures of complexes is crucial for their stability. The removal of both coordinated and non-coordinated water molecules leads to the disintegration and combustion of metal-organic frameworks to the appropriate lanthanide oxides. The luminescence features of complexes, quantum yield, and luminescent lifetimes were measured and analyzed. Only the Eu complexes show emission in the VIS region, whereas Nd and Er complexes emit in the NIR range. The luminescence properties of complexes were correlated with the crystal structures of the investigated complexes.

3.
Eur J Med Chem ; 254: 115373, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37084595

ABSTRACT

A series of quaternary ammonium fluoroquinolones was obtained by exhaustive methylation of the amine groups present at the 7-position of fluoroquinolones, including ciprofloxacin, enoxacin, gatifloxacin, lomefloxacin, and norfloxacin. The synthesized molecules were tested for their antibacterial and antibiofilm activities against Gram-positive and Gram-negative human pathogens, i.e. Staphylococcus aureus and Pseudomonas aeruginosa. The study showed that the synthesized compounds are potent antibacterial agents (MIC values at the lowest 6.25 µM) with low cytotoxicity in vitro as assessed on the BALB 3T3 mouse embryo cell line. Further experiments proved that the tested derivatives are able to bind to the DNA gyrase and topoisomerase IV active sites in a fluoroquinolone-characteristic manner. The most active quaternary ammonium fluoroquinolones, in contrast to ciprofloxacin, reduce the total biomass of P. aeruginosa ATCC 15442 biofilm in post-exposure experiments. The latter effect may be due to the dual mechanism of action of the quaternary fluoroquinolones, which also involves disruption of bacterial cell membranes. IAM-HPLC chromatographic experiments with immobilized artificial membranes (phospholipids) showed that the most active compounds were those with moderate lipophilicity and containing a cyclopropyl group at the N1 nitrogen atom in the fluoroquinolone core.


Subject(s)
Ammonium Compounds , Humans , Animals , Mice , Fluoroquinolones/pharmacology , Fluoroquinolones/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ciprofloxacin , Bacteria , Microbial Sensitivity Tests
4.
Molecules ; 27(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35566243

ABSTRACT

1H-pyrrole-2,5-dione derivatives are known for their wide range of pharmacological properties, including anti-inflammatory and antimicrobial activities. This study aimed to synthesize new 3,4-dimethyl-1H-pyrrole-2,5-dione derivatives 2a-2f in the reaction of N3-substituted amidrazones with 2,3-dimethylmaleic anhydride and evaluate their structural and biological properties. Compounds 2a-2f were studied by the 1H-13C NMR two-dimensional techniques (HMQC, HMBC) and single-crystal X-ray diffraction (derivatives 2a and 2d). The anti-inflammatory activity of compounds 2a-2f was examined by both an anti-proliferative study and a production study on the inhibition of pro-inflammatory cytokines (IL-6 and TNF-α) in anti-CD3 antibody- or lipopolysaccharide-stimulated human peripheral blood mononuclear cell (PBMC) cultures. The antibacterial activity of compounds 2a-2f against Staphylococcus aureus, Enterococcus faecalis, Micrococcus luteus, Esherichia coli, Pseudomonas aeruginosa, Yersinia enterocolitica, Mycobacterium smegmatis and Nocardia corralina strains was determined using the broth microdilution method. Structural studies of 2a-2f revealed the presence of distinct Z and E stereoisomers in the solid state and the solution. All compounds significantly inhibited the proliferation of PBMCs in anti-CD3-stimulated cultures. The strongest effect was observed for derivatives 2a-2d. The strongest inhibition of pro-inflammatory cytokine production was observed for the most promising anti-inflammatory compound 2a.


Subject(s)
Leukocytes, Mononuclear , Pyrroles , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Humans , Microbial Sensitivity Tests , Staphylococcus aureus
5.
Materials (Basel) ; 16(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36614592

ABSTRACT

Syntheses of two new monomers, namely the glucose derivatives 2,3,4,6-tetra-O-acetyl-1 methacryloyl-glucopyranose (MGlc) and 2,3,4,6 tetra-O-acetyl-1-acryloylglucopyranose (AGlc), are presented. Their chemical structures were determined by the FTIR, 1H and 13C NMR spectroscopies, the single-crystal X-ray analysis, supported by the powder X-ray diffraction, and the DSC analyses. Molecules of both monomers exist in the ß-anomeric form in the solid state. The variable temperature X-ray diffraction studies, supported by the DSC analyses, revealed AGlc's propensity for polymorphism and temperature-induced phase transitions. MGlc and AGlc crystallised from methanol were polymerized or copolymerized with methyl methacrylate and N-vinylpyrrolidone. The biodegradabilities of polymers as well as thermal and optical properties were studied. The results show that some properties of the obtained homopolymers and copolymers resemble those of PMMA. The main difference is that the AGlc and MGlc homopolymers are biodegradable while PMMA is not. The ternary copolymers, i.e., MGlc/AGlc-MMA-NVP lose more than 10% of their weight after six months.

6.
Materials (Basel) ; 14(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208366

ABSTRACT

The Mg(II) and heterometallic Mn(II)/Na(I) complexes of isoferulic acid (3-hydroxy-4-methoxycinnamic acid, IFA) were synthesized and characterized by infrared spectroscopy FT-IR, FT-Raman, electronic absorption spectroscopy UV/VIS, and single-crystal X-ray diffraction. The reaction of MgCl2 with isoferulic acid in the aqueous solutions of NaOH resulted in synthesis of the complex salt of the general formula of [Mg(H2O)6]⋅(C10H9O4)2⋅6H2O. The crystal structure of this compound consists of discrete octahedral [Mg(H2O)6]2+ cations, isoferulic acid anions and solvent water molecules. The hydrated metal cations are arranged among the organic layers. The multiple hydrogen-bonding interactions established between the coordinated and lattice water molecules and the functional groups of the ligand stabilize the 3D architecture of the crystal. The use of MnCl2 instead of MgCl2 led to the formation of the Mn(II)/Na(I) complex of the general formula [Mn3Na2(C10H7O4)8(H2O)8]. The compound is a 3D coordination polymer composed of centrosymmetric pentanuclear subunits. The antioxidant activity of these compounds was evaluated by assays based on different antioxidant mechanisms of action, i.e., with •OH, DPPH• and ABTS•+ radicals as well as CUPRAC (cupric ions reducing power) and lipid peroxidation inhibition assays. The pro-oxidant property of compounds was measured as the rate of oxidation of Trolox. The Mg(II) and Mn(II)/Na(I) complexes with isoferulic acid showed higher antioxidant activity than ligand alone in DPPH (IFA, IC50 = 365.27 µM, Mg(II) IFA IC50 = 153.50 µM, Mn(II)/Na(I) IFA IC50 = 149.00 µM) and CUPRAC assays (IFA 40.92 µM of Trolox, Mg(II) IFA 87.93 µM and Mn(II)/Na(I) IFA 105.85 µM of Trolox; for compounds' concentration 10 µM). Mg(II) IFA is a better scavenger of •OH than IFA and Mn(II)/Na(I) IFA complex. There was no distinct difference in ABTS•+ and lipid peroxidation assays between isoferulic acid and its Mg(II) complex, while Mn(II)/Na(I) complex showed lower activity than these compounds. The tested complexes displayed only slight antiproliferative activity tested in HaCaT human immortalized keratinocyte cell line within the solubility range. The Mn(II)/Na(I) IFA (16 µM in medium) caused an 87% (±5%) decrease in cell viability, the Mg salt caused a comparable, i.e., 87% (±4%) viability decrease in a concentration of 45 µM, while IFA caused this level of cell activity attenuation (87% ± 5%) at the concentration of 1582 µM (significant at α = 0.05).

7.
Materials (Basel) ; 14(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202006

ABSTRACT

Two coordination polymers, [Co(µ4-L)(H2O)2]n (1) and [Ni(µ-L)(H2O)4]n (2), were solvothermally assembled from the corresponding metal(II) chlorides and biphenyl-4,4-dioxydiacetic acid (H2L) as a flexible dicarboxylate linker. The cobalt(II) compound 1 featured a layer-pillared 3D metal-organic network with a cds topology, while the nickel(II) derivative 2 represented a linear chain 1D coordination polymer with a 2C1 topology. The µ4- and µ-L2- linkers exhibited different denticity and coordination modes in the synthesized compounds, thus contributing to their structural diversity. The dimensionality of 1 and 2 had an influence on their thermal stability and decomposition processes, which were investigated in detail by TG-DSC and TG-FTIR methods. Thermal decomposition products of coordination polymers were also analyzed by PXRD, confirming the formation of Co3O4/CoO and NiO as final materials. The obtained compounds broaden a family of coordination polymers assembled from flexible dicarboxylate linkers.

8.
Monatsh Chem ; 149(8): 1493-1500, 2018.
Article in English | MEDLINE | ID: mdl-30100633

ABSTRACT

ABSTRACT: The series of new hydrazide derivatives were synthesized in reactions of N3-substituted amidrazones with cyclic anhydrides as potential anti-inflammatory and antibacterial agents. The compounds were characterized by 1H-13C two-dimensional NMR techniques, which revealed the presence of two tautomeric forms in DMSO-d6 solutions, while the molecular structure of one species was confirmed by single-crystal X-ray diffraction. The anti-inflammatory effects of hydrazides on peripheral blood mononuclear cells were experimentally evaluated. Three compounds showed antiproliferative activity comparable to ibuprofen. One derivative demonstrated strong reduction of lymphocyte proliferation stimulated by anti-CD3 antibody (by 90%) and PHA, as well as low cell toxicity. The obtained compounds exhibited relatively weak antibacterial activity; they were more effective against Gram-positive bacterial strains.

9.
Med Chem Res ; 22(7): 3134-3147, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23710121

ABSTRACT

ABSTRACT: This study presents the synthesis and spectral analysis of new derivatives of 1,2,4-triazole-3-thione and 1,3,4-thiadiazole. New compounds were prepared by cyclization reaction of acyl thiosemicarbazide derivatives in the presence of alkaline and acidic media. All synthesized compounds were screened for their in vitro antibacterial activity by using the agar dilution technique. Six of the compounds had potential activity against Gram-positive bacteria (minimal inhibitory concentration [MIC] = 15.63-500 µg/mL). Some compounds showed good activity especially against Bacillus subtilis ATCC 6633 (MIC = 15.63-250 µg/mL), Staphylococcus aureus ATCC 25923 (MIC = 31.25-250 µg/mL), and Micrococcus luteus ATCC 10240 (MIC = 125-250 µg/mL).

10.
J Inorg Biochem ; 114: 55-64, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22694858

ABSTRACT

A new linear amidrazone derivative, 6-acetyl-cyclohex-3-enecarboxylic acid [1-pyridin-2-yl-1-(pyridyn-2-yloamin)meth-(Z)-ylidene] hydrazide, H(2)L (2) and its Cu(II) complex, [Cu(2)L(2)]·4H(2)O (3) were synthesized and characterized by elemental analysis, IR and (1)H NMR spectroscopy and cyclic voltammetry. Compound 2 was synthesized in the equimolar reaction of N(3)-substituted amidrazone with cis-1,2,3,6-tetrahydrophthalic anhydride. The Cu complex of 2 was obtained in the reaction with copper(II) acetate. The molecular structures of 2 and 3 were determined by X-ray crystallography. The parent ligand exists in its amide-hydrazone form in the solid state. The central amidrazone moiety has a Z configuration with respect to the double C=N bond. Coordination to the metal center promotes Z/E isomerization of the hydrazone group of the ligand. Compound 3 is a dinuclear four-coordinated Cu(II) complex with the amidrazone ligand behaving as a tetradentate double deprotonated chelating one. Several biological activities of 2 and 3 were examined in vitro; they were: antimicrobial properties against selected bacterial and fungal strains, suppression of phytohemagglutinin A (PHA)-induced proliferation of human peripheral blood mononuclear cells (PBMC) and their effects on tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) production. The cytotoxic activity of Cu(II) complex was determined with respect to the four carcinoma cell lines (SW 984, CX-1, L-1210, A-431). The studied complex exhibited significant cytotoxic effects (particularly against CX-1 colon carcinoma), comparable to those reported for cisplatin. Both compounds have shown a relatively low antibacterial activity and were devoid of antifungal properties.


Subject(s)
Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemical synthesis , Copper/chemistry , Hydrazones/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Crystallography, X-Ray , Fungi/drug effects , Fungi/growth & development , Humans , Hydrazones/chemistry , Hydrazones/pharmacology , Interleukin-6/biosynthesis , Interleukin-6/blood , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Magnetic Resonance Spectroscopy , Phthalic Anhydrides/chemistry , Phytohemagglutinins/antagonists & inhibitors , Phytohemagglutinins/pharmacology , Spectrophotometry, Infrared , Stereoisomerism , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/blood
11.
Eur J Med Chem ; 44(9): 3788-93, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19482385

ABSTRACT

New N-substituted amides of 3-(3-ethylthio-1,2,4-triazol-5-yl)propenoic acid (2-12) were designed and prepared by the condensation reaction of exo-S-ethyl-7-oxabicyclo-[2.2.1]-hept-5-ene-2,3-dicarbonyl isothiosemicarbazide (1) with primary amines. The chemical structure of all compounds was confirmed by IR, (1)H NMR, (13)C NMR spectra, the X-ray crystallography (for compounds 8, 11, 12) and elemental analysis. Moreover, compounds 9-11 were screened for their anticancer activity. Compounds 9 (in concentrations of 0.32 mM and 0.16 mM), 10 (in concentrations of 0.28 mM and 0.14 mM), and 11 (in concentrations of 0.35 mM and 0.17 mM) were found to be evidently effective in vitro against lung cell line (IC50). The distinctly marked antiproliferative effect of compounds 9 and 10 in breast carcinoma cells in vitro was ascertained. Moreover, the lowest cytotoxicity of compound 9 in concentrations of 0.16 mM and 0.03 mM against the normal skin fibroblast cell line and breast carcinoma cell in vitro after 24- and 48-h periods of incubation was noticed in this study.


Subject(s)
Amides/chemistry , Amides/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Amides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Breast Neoplasms/drug therapy , Carcinoma/drug therapy , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Female , Fibroblasts/cytology , Humans , Lung Neoplasms/drug therapy , Skin/cytology , Triazoles/chemical synthesis
12.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 2): o274, 2009 Jan 10.
Article in English | MEDLINE | ID: mdl-21581888

ABSTRACT

The title compound, C(9)H(11)N(3)S(2), exists in the thione form in the crystal structure. The central triazole ring is almost perpendicular to the thio-phene ring which is disordered over two orientations [dihedral angles of 88.5 (7) and 85.7 (8)° for the two orientations]. The crystal structure is stabilized by strong inter-molecular N-H⋯S hydrogen bonds, forming centrosymmetric dimers, and by some weak C-H⋯S inter-actions.

13.
Acta Crystallogr C ; 64(Pt 10): o574-7, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18838779

ABSTRACT

The title compound, C(19)H(13)N(5)O(2), crystallizes in two monoclinic forms depending on the solvent used. From methanol or acetone, a yellow form [(Ia), m.p. 533 K] in the space group P2(1) is obtained, while with ethanol as the solvent, an orange form [(Ib), m.p. 541 K] in the space group Cc results. The conformers observed in the two polymorphs differ primarily in the relative orientation of pyridine/phenyl and triazole rings. Molecules of both polymorphs form chains through carboxyl O-H...N hydrogen bonding; however, in each crystal structure, a different group acts as acceptor, viz. a triazole and a pyridyl N atom for (Ia) and (Ib), respectively. This is the first case of polymorphism observed for crystals of a 3,4,5-trisubstituted 1,2,4-triazole derivative.


Subject(s)
Niacin/analogs & derivatives , Niacin/chemistry , Triazoles/chemistry , Crystallization , Crystallography, X-Ray , Hydrogen Bonding , Solvents/chemistry
14.
Eur J Med Chem ; 39(10): 873-7, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15464621

ABSTRACT

New 3-(3,4-diaryl-1,2,4-triazole-5-yl)propenoic acid derivatives (8-14) were synthesized by condensation of N(3)-substituted amidrazones (1-7) with maleic anhydride. Molecular structure of obtained compounds was confirmed by an elemental analysis, IR and (1)H NMR spectra, and the X-ray crystallography for compound 11. The influence of the compound 9 on the central nervous system (CNS) of mice in some behavioural test was examined. The investigated compound showed anticonvulsive activity and potent antinociceptive action.


Subject(s)
Anticonvulsants/chemical synthesis , Pain Measurement/drug effects , Triazoles/chemical synthesis , Alkenes/chemical synthesis , Alkenes/pharmacology , Animals , Anticonvulsants/pharmacology , Male , Mice , Triazoles/pharmacology
15.
J Pept Sci ; 10(7): 448-61, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15298180

ABSTRACT

Structural parameters, originating from x-ray crystallographic data, have been compiled for 13 derivatives of amino acids, peptides and related compounds, which contain a total of 14 Fmoc-NH- moieties. For these moieties, molecular geometries and conformations--described by the omegao, theta1, theta2 and theta3' torsion angles--were analysed and compared with the corresponding parameters for the Z-NH- and Boc-NH-moieties (290 and 553, respectively). To gain a deeper insight into the conformational features of the Fmoc-NH- moiety, ab initio free molecule calculations were performed for fully relaxed minima. Also the potential energy surface as a function of the torsion angles (theta3', theta2) was generated. The conformational features of the Fmoc-NH- moiety: (i) two possible values for the angle omegao (approximately 180 degrees or, rarely, approximately theta degrees) and (ii) the angle theta1 = 180 degrees +/- 15 degrees, are common to the Z-NH- and Boc-NH- systems. By contrast, the theta2 and theta3 angles in the Fmoc, Z and Boc groups differ essentially. In the Fmoc groups theta2 mostly has values of 180 degrees +/- 30 degrees and values up [115 degrees] seem to be forbidden, whereas fewer than half of the Z groups adopt theta2 approximately 180 degrees and the remainder have theta2 in the range of [90 degrees +/- 20 degrees]. On the other hand, the Boc methyl groups are staggered. The theta3 values observed for Fmoc are limited to the regions of 180 degrees +/- 20 degrees and 160 degrees +/- 20 degrees], while for the Z group a variety of theta3 occurs. The orientation of the fluorenyl vs the urethane function is mostly trans. Our results suggest a lower conformational flexibility for the Fmoc group compared with that of the Z group. Our calculations confirm that the observed conformational features for the Fmoc-NH- moiety are inherent properties. The Fmoc-NH-moiety in crystals involves the participation of its O=C-NH functionality in hydrogen bonds.


Subject(s)
Amino Acids/chemistry , Fluorenes/chemistry , Crystallization , Crystallography, X-Ray , Hydrogen Bonding , Molecular Conformation , Molecular Structure , Peptides/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...