Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oper Dent ; 42(2): 185-195, 2017.
Article in English | MEDLINE | ID: mdl-27802123

ABSTRACT

PURPOSE: To evaluate the cement line thickness and the interface quality in milled or injected lithium disilicate ceramic restorations and their influence on marginal adaptation using different cement types and different adhesive cementation techniques. METHODS AND MATERIALS: Sixty-four bovine teeth were prepared for full crown restoration (7.0±0.5 mm in height, 8.0 mm in cervical diameter, and 4.2 mm in incisal diameter) and were divided into two groups: CAD/CAM automation technology, IPS e.max CAD (CAD), and isostatic injection by heat technology, IPS e.max Press (PRESS). RelyX ARC (ARC) and RelyX U200 resin cements were used as luting agents in two activation methods: initial self-activation and light pre-activation for one second (tack-cure). Next, the specimens were stored in distilled water at 23°C ± 2°C for 72 hours. The cement line thickness was measured in micrometers, and the interface quality received scores according to the characteristics and sealing aspects. The evaluations were performed with an optical microscope, and scanning electron microscope images were presented to demonstrate the various features found in the cement line. For the cement line thickness, data were analyzed with three-way analysis of variance (ANOVA) and the Games-Howell test (α=0.05). For the variable interface quality, the data were analyzed with the Mann-Whitney U-test, the Kruskal-Wallis test, and multiple comparisons nonparametric Dunn test (α=0.05). RESULTS: The ANOVA presented statistical differences among the ceramic restoration manufacturing methods as well as a significant interaction between the manufacturing methods and types of cement (p<0.05). The U200 presented lower cement line thickness values when compared to the ARC with both cementation techniques (p<0.05). With regard to the interface quality, the Mann-Whitney U-test and the Kruskal-Wallis test demonstrated statistical differences between the ceramic restoration manufacturing methods and cementation techniques. The PRESS ceramics obtained lower scores than did the CAD ceramics when using ARC cement (p<0.05). CONCLUSIONS: Milled restorations cemented with self-adhesive resin cement resulted in a thinner cement line that is statistically different from that of CAD or pressed ceramics cemented with resin cement with adhesive application. No difference between one-second tack-cure and self-activation was noted.


Subject(s)
Computer-Aided Design , Crowns , Dental Marginal Adaptation , Dental Porcelain/chemistry , Dental Prosthesis Design , Resin Cements/chemistry , Animals , Bisphenol A-Glycidyl Methacrylate , Cattle , Microscopy, Electron, Scanning , Polyethylene Glycols , Polymethacrylic Acids
2.
Oper Dent ; 41(1): 103-10, 2016.
Article in English | MEDLINE | ID: mdl-26332737

ABSTRACT

The purpose of this study was to evaluate the push-out strength of two different adhesive cements (total etch and self-adhesive) for glass fiber post (GFP) cementation using two different techniques (microbrush and elongation tip) of cement application. In addition, this study evaluated the effect of total-etch conditioning before the use of a self-adhesive cement. Sixty premolar specimens with a single root canal were selected, endodontically treated, and shaped for GFP cementation. The specimens were randomly placed into one of six groups according to the cement and technique used: RelyX ARC (ARC): ARC + microbrush, ARC + elongation tip; RelyX Unicem (RU): RU + microbrush, RU + elongation tip; or RelyX Unicem + 37% phosphoric acid (RUE): RUE + microbrush, RUE + elongation tip. Each specimen root was cut perpendicular to the vertical axis yielding six 1.0-mm-thick sections. Push-out strength test was performed, followed by statistical analysis using three-way analysis of variance and the Games-Howell test (p<0.05). Statistically significant differences between the groups were found (p< 0.05). The cervical third of the roots had the highest mean push-out strength values, while the apical third had the lowest mean values regardless of the technique used. The elongation technique produced higher mean push-out strength values compared to the microbrush technique. The self-etch adhesive cement had the highest mean push-out strength value in all thirds. The addition of a conditioning step before the self-etch adhesive cementation appears to be effective in enhancing push-out strength with GFPs.


Subject(s)
Dental Bonding , Post and Core Technique , Glass , Resin Cements
3.
Oper Dent ; 38(3): E1-8, 2013.
Article in English | MEDLINE | ID: mdl-23088189

ABSTRACT

The aim of this study was to evaluate in vitro the hardness and shrinkage of a pre-cooled or preheated hybrid composite resin cured by a quartz-tungsten-halogen light (QTH) and light-emitting diode (LED) curing units. The temperature on the tip of the devices was also investigated. Specimens of Charisma resin composite were produced with a metal mold kept under 37°C. The syringes were submitted to 4°C, 23°C, and 60°C (n=20) before light-curing, which was carried out with the Optilux 501 VCL and Elipar FreeLight 2 units for 20 seconds. The specimens were kept under 37°C in a high humidity condition and darkness for 48 hours. The Knoop hardness test was carried out with a 50 gram-force (gf) load for 10 seconds, and the measurement of the shrinkage gap was carried out using an optical microscope. The data were subjected to analysis of variance and the Games-Howell test (α=0.05). The mean hardness of the groups were similar, irrespective of the temperatures (p>0.05). For 4°C and 60°C, the top surface light-cured by LED presented significantly reduced shrinkage when compared with the bottom and to both surfaces cured by QTH (p<0.05). It was concluded that the hardness was not affected by pre-cooling or preheating. However, polymerization shrinkage was slightly affected by different pre-polymerization temperatures. The QTH-curing generated greater shrinkage than LED-curing only when the composite was preheated. Different temperatures did not affect the composite hardness and shrinkage when cured by a LED curing unit.


Subject(s)
Composite Resins/chemistry , Curing Lights, Dental/classification , Dental Materials/chemistry , Cold Temperature , Composite Resins/radiation effects , Darkness , Dental Materials/radiation effects , Dental Stress Analysis/instrumentation , Hardness , Hot Temperature , Humans , Humidity , Light-Curing of Dental Adhesives/instrumentation , Light-Curing of Dental Adhesives/methods , Materials Testing , Polymerization , Stress, Mechanical , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...