Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
J Biol Chem ; 300(8): 107561, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002674

ABSTRACT

Protein phosphatase 1D (PPM1D, Wip1) is induced by the tumor suppressor p53 during DNA damage response signaling and acts as an oncoprotein in several human cancers. Although PPM1D is a potential therapeutic target, insights into its atomic structure were challenging due to flexible regions unique to this family member. Here, we report the first crystal structure of the PPM1D catalytic domain to 1.8 Å resolution. The structure reveals the active site with two Mg2+ ions bound, similar to other structures. The flap subdomain and B-loop, which are crucial for substrate recognition and catalysis, were also resolved, with the flap forming two short helices and three short ß-strands that are followed by an irregular loop. Unexpectedly, a nitrogen-oxygen-sulfur bridge was identified in the catalytic domain. Molecular dynamics simulations and kinetic studies provided further mechanistic insights into the regulation of PPM1D catalytic activity. In particular, the kinetic experiments demonstrated a magnesium concentration-dependent lag in PPM1D attaining steady-state velocity, a feature of hysteretic enzymes that show slow transitions compared with catalytic turnover. All combined, these results advance the understanding of PPM1D function and will support the development of PPM1D-targeted therapeutics.


Subject(s)
Catalytic Domain , Protein Phosphatase 2C , Protein Phosphatase 2C/metabolism , Protein Phosphatase 2C/chemistry , Protein Phosphatase 2C/genetics , Humans , Crystallography, X-Ray , Magnesium/metabolism , Magnesium/chemistry , Molecular Dynamics Simulation , Kinetics , Phosphoprotein Phosphatases/chemistry , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics
2.
JACS Au ; 3(7): 1952-1964, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37502163

ABSTRACT

Selective incorporation of conformational constraints into thyclotides can be used to modulate their binding to complementary oligonucleotides, increase polarity, and optimize uptake into HCT116 cells without assistance from moieties known to promote cell uptake. The X-ray structure and biophysical studies of a thyclotide-DNA duplex reveal that incorporation of tetrahydrofurans into an aegPNA backbone promotes a helical conformation that enhances binding to complementary DNA and RNA. Selective incorporation of tetrahydrofurans into the aegPNA backbone allows polarity to be increased incrementally so that uptake into HCT116 cells can be optimized. The enhanced binding, polarity, and cellular uptake properties of thyclotides were used to demonstrate effective inhibition of microRNA-21 in HCT116 cells.

3.
Eur J Med Chem ; 243: 114763, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36179402

ABSTRACT

The wild-type p53 induced phosphatase 1 (Wip1), a member of the serine/threonine-specific PP2C family, is overexpressed in numerous human cancers. Wip1 dephosphorylates p53 as well as several kinases (such as p38 MAPK, ATM, Chk1, and Chk2) in the DNA damage response pathway that are responsible for maintaining genomic stability and preventing oncogenic transformation. As a result, Wip1 is an attractive target for synthetic inhibitors that could be further developed into therapeutics to treat some cancers. In this study, we report a series of alkyl-substituted N-methylaryl-N'-aryl-4-aminobenzamides and their inhibitory activity of the Wip1 phosphatase. A straightforward synthetic route was developed to synthesize the target compounds from commercially available starting materials. Three different portions (R1, R2, R3) of the core scaffold were extensively modified to examine structure-activity relationships. This study revealed interesting trends about a new molecular scaffold to inhibit Wip1.


Subject(s)
Phosphoprotein Phosphatases , Tumor Suppressor Protein p53 , Humans , Protein Phosphatase 2C/genetics , Protein Phosphatase 2C/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Tumor Suppressor Protein p53/metabolism , Protein Serine-Threonine Kinases , DNA Damage , Phosphorylation
4.
Front Oncol ; 12: 1094210, 2022.
Article in English | MEDLINE | ID: mdl-36713582

ABSTRACT

TP53 is the most commonly mutated gene in cancer, and gain-of-function mutations have wide-ranging effects. Efforts to reactivate wild-type p53 function and inhibit mutant functions have been complicated by the variety of TP53 mutations. Identified from a screen, the NSC59984 compound has been shown to restore activity to mutant p53 in colorectal cancer cells. Here, we investigated its effects on esophageal adenocarcinoma cells with specific p53 hot-spot mutations. NSC59984 treatment of cells reactivated p53 transcriptional regulation, inducing mitochondrial intrinsic apoptosis. Analysis of its effects on cellular metabolism demonstrated increased utilization of the pentose phosphate pathway and inhibition of glycolysis at the fructose-1,6-bisphosphate to fructose 6-phosphate junction. Furthermore, treatment of cells with NSC59984 increased reactive oxygen species production and decreased glutathione levels; these effects were enhanced by the addition of buthionine sulfoximine and inhibited by N-acetyl cysteine. We found that the effects of NSC59984 were substantially greater in cells harboring the p53 R248W mutation. Overall, these findings demonstrate p53-dependent effects of NSC59984 on cellular metabolism, with increased activity in cells harboring the p53 R248W mutation. This research highlights the importance of defining the mutational status of a particular cancer to create a patient-centric strategy for the treatment of p53-driven cancers.

5.
Nat Commun ; 12(1): 3622, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131120

ABSTRACT

PPM1D/Wip1 is a negative regulator of the tumor suppressor p53 and is overexpressed in several human solid tumors. Recent reports associate gain-of-function mutations of PPM1D in immune cells with worse outcomes for several human cancers. Here we show that mice with genetic knockout of Ppm1d or with conditional knockout of Ppm1d in the hematopoietic system, in myeloid cells, or in neutrophils all display significantly reduced growth of syngeneic melanoma or lung carcinoma tumors. Ppm1d knockout neutrophils infiltrate tumors extensively. Chemical inhibition of Wip1 in human or mouse neutrophils increases anti-tumor phenotypes, p53-dependent expression of co-stimulatory ligands, and proliferation of co-cultured cytotoxic T cells. These results suggest that inhibition of Wip1 in neutrophils enhances immune anti-tumor responses.


Subject(s)
DNA Damage , Immunity , Neutrophils/metabolism , Protein Phosphatase 2C/genetics , Protein Phosphatase 2C/metabolism , Animals , Antineoplastic Agents , Cell Line, Tumor , Cell Proliferation , Female , Humans , Lung , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , T-Lymphocytes , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
6.
Nucleic Acids Res ; 49(2): 713-725, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33406227

ABSTRACT

We report a series of synthetic, nucleic acid mimics with highly customizable thermodynamic binding to DNA. Incorporation of helix-promoting cyclopentanes into peptide nucleic acids (PNAs) increases the melting temperatures (Tm) of PNA+DNA duplexes by approximately +5°C per cyclopentane. Sequential addition of cyclopentanes allows the Tm of PNA + DNA duplexes to be systematically fine-tuned from +5 to +50°C compared with the unmodified PNA. Containing only nine nucleobases and an equal number of cyclopentanes, cpPNA-9 binds to complementary DNA with a Tm around 90°C. Additional experiments reveal that the cpPNA-9 sequence specifically binds to DNA duplexes containing its complementary sequence and functions as a PCR clamp. An X-ray crystal structure of the cpPNA-9-DNA duplex revealed that cyclopentanes likely induce a right-handed helix in the PNA with conformations that promote DNA binding.


Subject(s)
Cyclopentanes/chemistry , DNA/metabolism , Nucleic Acid Conformation , Peptide Nucleic Acids/chemistry , Calorimetry , Circular Dichroism , Crystallography, X-Ray , Cyclopentanes/metabolism , Models, Molecular , Nucleic Acid Denaturation , Peptide Nucleic Acids/metabolism , Real-Time Polymerase Chain Reaction , Spectrophotometry, Ultraviolet , Thermodynamics , Transition Temperature
7.
J Biol Chem ; 294(46): 17654-17668, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31481464

ABSTRACT

WT P53-Induced Phosphatase 1 (WIP1) is a member of the magnesium-dependent serine/threonine protein phosphatase (PPM) family and is induced by P53 in response to DNA damage. In several human cancers, the WIP1 protein is overexpressed, which is generally associated with a worse prognosis. Although WIP1 is an attractive therapeutic target, no potent, selective, and bioactive small-molecule modulator with favorable pharmacokinetics has been reported. Phosphatase enzymes are among the most challenging targets for small molecules because of the difficulty of achieving both modulator selectivity and bioavailability. Another major obstacle has been the availability of robust and physiologically relevant phosphatase assays that are suitable for high-throughput screening. Here, we describe orthogonal biochemical WIP1 activity assays that utilize phosphopeptides from native WIP1 substrates. We optimized an MS assay to quantify the enzymatically dephosphorylated peptide reaction product in a 384-well format. Additionally, a red-shifted fluorescence assay was optimized in a 1,536-well format to enable real-time WIP1 activity measurements through the detection of the orthogonal reaction product, Pi We validated these two optimized assays by quantitative high-throughput screening against the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection and used secondary assays to confirm and evaluate inhibitors identified in the primary screen. Five inhibitors were further tested with an orthogonal WIP1 activity assay and surface plasmon resonance binding studies. Our results validate the application of miniaturized physiologically relevant and orthogonal WIP1 activity assays to discover small-molecule modulators from high-throughput screens.


Subject(s)
Enzyme Activators/chemistry , Phosphopeptides/chemistry , Protein Phosphatase 2C/chemistry , Small Molecule Libraries/chemistry , Enzyme Activators/isolation & purification , Enzyme Activators/pharmacology , High-Throughput Screening Assays , Humans , Protein Phosphatase 2C/antagonists & inhibitors , Small Molecule Libraries/isolation & purification , Small Molecule Libraries/pharmacology , Substrate Specificity , Tumor Suppressor Protein p53/chemistry
8.
J Biol Chem ; 293(21): 7993-8008, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29602904

ABSTRACT

Metal-dependent protein phosphatases (PPM) are evolutionarily unrelated to other serine/threonine protein phosphatases and are characterized by their requirement for supplementation with millimolar concentrations of Mg2+ or Mn2+ ions for activity in vitro The crystal structure of human PPM1A (also known as PP2Cα), the first PPM structure determined, displays two tightly bound Mn2+ ions in the active site and a small subdomain, termed the Flap, located adjacent to the active site. Some recent crystal structures of bacterial or plant PPM phosphatases have disclosed two tightly bound metal ions and an additional third metal ion in the active site. Here, the crystal structure of the catalytic domain of human PPM1A, PPM1Acat, complexed with a cyclic phosphopeptide, c(MpSIpYVA), a cyclized variant of the activation loop of p38 MAPK (a physiological substrate of PPM1A), revealed three metal ions in the active site. The PPM1Acat D146E-c(MpSIpYVA) complex confirmed the presence of the anticipated third metal ion in the active site of metazoan PPM phosphatases. Biophysical and computational methods suggested that complex formation results in a slightly more compact solution conformation through reduced conformational flexibility of the Flap subdomain. We also observed that the position of the substrate in the active site allows solvent access to the labile third metal-binding site. Enzyme kinetics of PPM1Acat toward a phosphopeptide substrate supported a random-order, bi-substrate mechanism, with substantial interaction between the bound substrate and the labile metal ion. This work illuminates the structural and thermodynamic basis of an innate mechanism regulating the activity of PPM phosphatases.


Subject(s)
Metals/metabolism , Phosphopeptides/metabolism , Protein Phosphatase 2C/chemistry , Protein Phosphatase 2C/metabolism , Amino Acid Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Humans , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Conformation , Protein Phosphatase 2C/genetics , Sequence Homology , Substrate Specificity
9.
ChemMedChem ; 13(9): 894-901, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29476592

ABSTRACT

The wild-type p53 induced phosphatase 1, Wip1 (PP2Cδ), is a protein phosphatase 2C (PP2C) family serine/threonine phosphatase that negatively regulates the function of the tumor suppressor p53 and several of its positive regulators such as ATM, Chk1, Chk2, Mdm2, and p38 MAPK. Wip1 dephosphorylates and inactivates its protein targets, which are critical for cellular stress responses. Additionally, Wip1 is frequently amplified and overexpressed in several human cancer types. Because of its negative role in regulating the function of tumor suppressor proteins, Wip1 has been identified as a potential therapeutic target in various types of cancers. Based on a recently reported Wip1 inhibitor (G-1), we performed an extensive structure-activity relationship (SAR) analysis. This led us to interesting findings in SAR trends and to the discovery of new chemical analogues with good specificity and bioavailability.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Protein Phosphatase 2C/antagonists & inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Humans , MCF-7 Cells , Protein Phosphatase 2C/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
10.
Biochemistry ; 56(21): 2676-2689, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28481111

ABSTRACT

PPM serine/threonine protein phosphatases function in signaling pathways and require millimolar concentrations of Mn2+ or Mg2+ ions for activity. Whereas the crystal structure of human PP2Cα displayed two tightly bound Mn2+ ions in the active site, recent investigations of PPM phosphatases have characterized the binding of a third, catalytically essential metal ion. The binding of the third Mg2+ to PP2Cα was reported to have millimolar affinity and to be entropically driven, suggesting it may be structurally and catalytically important. Here, we report the use of hydrogen/deuterium exchange-mass spectrometry and molecular dynamics to characterize conformational changes in PP2Cα between the active and inactive states. In the presence of millimolar concentrations of Mg2+, metal-coordinating residues in the PP2Cα active site are maintained in a more rigid state over the catalytically relevant time scale of 30-300 s. Submillimolar Mg2+ concentrations or introduction of the D146A mutation increased the conformational mobility in the Flap subdomain and in buttressing helices α1 and α2. Residues 192-200, located in the Flap subdomain, exhibited the greatest interplay between effects of Mg2+ concentration and the D146A mutation. Molecular dynamics simulations suggest that the presence of the third metal ion and the D146A mutation each produce distinct conformational realignments in the Flap subdomain. These observations suggest that the binding of Mg2+ to the D146/D239 binding site stabilizes the conformation of the active site and the Flap subdomain.


Subject(s)
Deuterium Exchange Measurement , Protein Phosphatase 2C/chemistry , Protein Phosphatase 2C/metabolism , Binding Sites , Humans , Mass Spectrometry , Protein Conformation
11.
J Am Soc Mass Spectrom ; 28(5): 978-981, 2017 May.
Article in English | MEDLINE | ID: mdl-28236290

ABSTRACT

Hydrogen-deuterium exchange mass spectrometry (HDX-MS) provides information about protein conformational mobility under native conditions. The area between exchange curves, A bec , a functional data analysis concept, was adapted to the interpretation of HDX-MS data and provides a useful measure of exchange curve dissimilarity for tests of significance. Importantly, for most globular proteins under native conditions, A bec values provide an estimate of the log ratio of exchange-competent fractions in the two states, and thus are related to differences in the free energy of microdomain unfolding. Graphical Abstract ᅟ.

12.
Cancer Cell ; 31(1): 50-63, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28073004

ABSTRACT

Given the paucity of druggable mutations in high-risk neuroblastoma (NB), we undertook chromatin-focused small interfering RNA and chemical screens to uncover epigenetic regulators critical for the differentiation block in high-risk NB. High-content Opera imaging identified 53 genes whose loss of expression led to a decrease in NB cell proliferation and 16 also induced differentiation. From these, the secondary chemical screen identified SETD8, the H4K20me1 methyltransferase, as a druggable NB target. Functional studies revealed that SETD8 ablation rescued the pro-apoptotic and cell-cycle arrest functions of p53 by decreasing p53K382me1, leading to activation of the p53 canonical pathway. In pre-clinical xenograft NB models, genetic or pharmacological (UNC0379) SETD8 inhibition conferred a significant survival advantage, providing evidence for SETD8 as a therapeutic target in NB.


Subject(s)
Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Neuroblastoma/drug therapy , RNA, Small Interfering/genetics , Tumor Suppressor Protein p53/physiology , Cell Differentiation , Cell Proliferation , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/physiology , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology , Quinazolines/pharmacology , Tumor Suppressor Protein p53/analysis
13.
Biochemistry ; 54(11): 2001-10, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25753752

ABSTRACT

The p53 tumor suppressor is a critical mediator of the cellular response to stress. The N-terminal transactivation domain of p53 makes protein interactions that promote its function as a transcription factor. Among those cofactors is the histone acetyltransferase p300, which both stabilizes p53 and promotes local chromatin unwinding. Here, we report the nuclear magnetic resonance solution structure of the Taz2 domain of p300 bound to the second transactivation subdomain of p53. In the complex, p53 forms an α-helix between residues 47 and 55 that interacts with the α1-α2-α3 face of Taz2. Mutational analysis indicated several residues in both p53 and Taz2 that are critical for stabilizing the interaction. Finally, further characterization of the complex by isothermal titration calorimetry revealed that complex formation is pH-dependent and releases a bound chloride ion. This study highlights differences in the structures of complexes formed by the two transactivation subdomains of p53 that may be broadly observed and play critical roles in p53 transcriptional activity.


Subject(s)
E1A-Associated p300 Protein/metabolism , Histone Acetyltransferases/metabolism , Models, Molecular , Tumor Suppressor Protein p53/metabolism , Amino Acid Substitution , Calorimetry, Differential Scanning , E1A-Associated p300 Protein/chemistry , E1A-Associated p300 Protein/genetics , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/genetics , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Kinetics , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Protein Stability , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics
14.
Structure ; 23(2): 322-31, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25651062

ABSTRACT

Individual posttranslational modifications (PTMs) of p53 mediate diverse p53-dependent responses; however, much less is known about the combinatorial action of adjacent modifications. Here, we describe crosstalk between the early DNA damage response mark p53K382me2 and the surrounding PTMs that modulate binding of p53 cofactors, including 53BP1 and p300. The 1.8 Å resolution crystal structure of the tandem Tudor domain (TTD) of 53BP1 in complex with p53 peptide acetylated at K381 and dimethylated at K382 (p53K381acK382me2) reveals that the dual PTM induces a conformational change in p53. The α-helical fold of p53K381acK382me2 positions the side chains of R379, K381ac, and K382me2 to interact with TTD concurrently, reinforcing a modular design of double PTM mimetics. Biochemical and nuclear magnetic resonance analyses show that other surrounding PTMs, including phosphorylation of serine/threonine residues of p53, affect association with TTD. Our findings suggest a novel PTM-driven conformation switch-like mechanism that may regulate p53 interactions with binding partners.


Subject(s)
DNA Methylation/genetics , Ligands , Models, Molecular , Protein Processing, Post-Translational/genetics , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism , Crystallography, X-Ray , DNA Damage/physiology , Humans , Lysine/metabolism , Magnetic Resonance Spectroscopy , Protein Conformation
15.
Cell Cycle ; 13(6): 1015-29, 2014.
Article in English | MEDLINE | ID: mdl-24552809

ABSTRACT

Wip1 (protein phosphatase Mg(2+)/Mn(2+)-dependent 1D, Ppm1d) is a nuclear serine/threonine protein phosphatase that is induced by p53 following the activation of DNA damage response (DDR) signaling. Ppm1d(-/-) mouse embryonic fibroblasts (MEFs) exhibit premature senescence under conventional culture conditions; however, little is known regarding the role of Wip1 in regulating cellular senescence. In this study, we found that even at a representative physiological concentration of 3% O2, Ppm1d(-/-) MEFs underwent premature cellular senescence that depended on the functional activation of p53. Interestingly, Ppm1d(-/-) MEFs showed increased H2AX phosphorylation levels without increased levels of reactive oxygen species (ROS) or DNA base damage compared with wild-type (Wt) MEFs, suggesting a decreased threshold for DDR activation or sustained DDR activation during recovery. Notably, the increased H2AX phosphorylation levels observed in Ppm1d(-/-) MEFs were primarily associated with S-phase cells and predominantly dependent on the activation of ATM. Moreover, these same phenotypes were observed when Wt and Ppm1d(-/-) MEFs were either transiently or chronically exposed to low levels of agents that induce replication-mediated double-stranded breaks. These findings suggest that Wip1 prevents the induction of cellular senescence at physiological oxygen levels by attenuating DDR signaling in response to endogenous double-stranded breaks that form during DNA replication.


Subject(s)
Aging, Premature/metabolism , DNA Damage/physiology , DNA Replication/physiology , Oxygen/metabolism , Phosphoprotein Phosphatases/metabolism , Tumor Suppressor Protein p53/metabolism , Aging, Premature/genetics , Animals , Cells, Cultured , Histones/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Protein Phosphatase 2C , Reactive Oxygen Species/metabolism , S Phase/physiology , Signal Transduction
16.
J Clin Invest ; 123(12): 5247-57, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24231352

ABSTRACT

Cellular senescence contributes to aging and decline in tissue function. p53 isoform switching regulates replicative senescence in cultured fibroblasts and is associated with tumor progression. Here, we found that the endogenous p53 isoforms Δ133p53 and p53ß are physiological regulators of proliferation and senescence in human T lymphocytes in vivo. Peripheral blood CD8+ T lymphocytes collected from healthy donors displayed an age-dependent accumulation of senescent cells (CD28-CD57+) with decreased Δ133p53 and increased p53ß expression. Human lung tumor-associated CD8+ T lymphocytes also harbored senescent cells. Cultured CD8+ blood T lymphocytes underwent replicative senescence that was associated with loss of CD28 and Δ133p53 protein. In poorly proliferative, Δ133p53-low CD8+CD28- cells, reconstituted expression of either Δ133p53 or CD28 upregulated endogenous expression of each other, which restored cell proliferation, extended replicative lifespan and rescued senescence phenotypes. Conversely, Δ133p53 knockdown or p53ß overexpression in CD8+CD28+ cells inhibited cell proliferation and induced senescence. This study establishes a role for Δ133p53 and p53ß in regulation of cellular proliferation and senescence in vivo. Furthermore, Δ133p53-induced restoration of cellular replicative potential may lead to a new therapeutic paradigm for treating immunosenescence disorders, including those associated with aging, cancer, autoimmune diseases, and HIV infection.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Cellular Senescence/physiology , Lung Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/pathology , Protein Isoforms/physiology , Tumor Suppressor Protein p53/physiology , Adult , Aged , Autophagy , Cell Division , Cells, Cultured , Female , Gene Expression Regulation, Neoplastic , Humans , Leupeptins/pharmacology , Lung Neoplasms/immunology , Macrolides/pharmacology , Male , Middle Aged , Neoplasm Proteins/physiology , Proteolysis , Recombinant Proteins/metabolism , Transduction, Genetic , Tumor Microenvironment , Young Adult
17.
Biochemistry ; 52(34): 5830-43, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23906386

ABSTRACT

The PPM phosphatases require millimolar concentrations of Mg²âº or Mn²âº to activate phosphatase activity in vitro. The human phosphatases PP2Cα (PPM1A) and Wip1 (PPM1D) differ in their physiological function, substrate specificity, and apparent metal affinity. A crystallographic structure of PP2Cα shows only two metal ions in the active site. However, recent structural studies of several bacterial PP2C phosphatases have indicated three metal ions in the active site. Two residues that coordinate the third metal ion are highly conserved, suggesting that human PP2C phosphatases may also bind a third ion. Here, isothermal titration calorimetry analysis of Mg²âº binding to PP2Cα distinguished binding of two ions to high affinity sites from the binding of a third ion with a millimolar affinity, similar to the apparent metal affinity required for catalytic activity. Mutational analysis indicated that Asp239 and either Asp146 or Asp243 was required for low-affinity binding of Mg²âº, but that both Asp146 and Asp239 were required for catalysis. Phosphatase activity assays in the presence of MgCl2, MnCl2, or mixtures of the two, demonstrate high phosphatase activity toward a phosphopeptide substrate when Mg²âº was bound to the low-affinity site, whether Mg²âº or Mn²âº ions were bound to the high affinity sites. Mutation of the corresponding putative third metal ion-coordinating residues of Wip1 affected catalytic activity similarly both in vitro and in human cells. These results suggest that phosphatase activity toward phosphopeptide substrates by PP2Cα and Wip1 requires the binding of a Mg²âº ion to the low-affinity site.


Subject(s)
Catalytic Domain , Magnesium/metabolism , Phosphoprotein Phosphatases/metabolism , Alanine/chemistry , Amino Acid Sequence , Aspartic Acid/chemistry , Catalysis , HEK293 Cells , Humans , Manganese/metabolism , Phosphopeptides/metabolism , Phosphoprotein Phosphatases/genetics , Protein Phosphatase 2C , Sequence Alignment
18.
Cell Cycle ; 12(16): 2656-64, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23907125

ABSTRACT

The Wip1 phosphatase is an oncogene that is overexpressed in a variety of primary human cancers. We were interested in identifying genetic variants that could change Wip1 activity. We identified 3 missense SNPs of the human Wip1 phosphatase, L120F, P322Q, and I496V confer a dominant-negative phenotype. On the other hand, in primary human cancers, PPM1D mutations commonly result in a gain-of-function phenotype, leading us to identify a hot-spot truncating mutation at position 525. Surprisingly, we also found a significant number of loss-of-function mutations of PPM1D in primary human cancers, both in the phosphatase domain and in the C terminus. Thus, PPM1D has evolved to generate genetic variants with lower activity, potentially providing a better fitness for the organism through suppression of multiple diseases. In cancer, however, the situation is more complex, and the presence of both activating and inhibiting mutations requires further investigation to understand their contribution to tumorigenesis.


Subject(s)
DNA Damage/genetics , Evolution, Molecular , Genetic Variation , Models, Molecular , Neoplasms/genetics , Phosphoprotein Phosphatases/genetics , Amino Acid Sequence , Blotting, Western , Colony-Forming Units Assay , Fluorescent Antibody Technique , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation/genetics , Phosphoprotein Phosphatases/chemistry , Protein Phosphatase 2C
19.
Int J Radiat Biol ; 88(12): 1039-45, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22640875

ABSTRACT

PURPOSE: The frequency of DNA strand breaks produced by the decay of Auger electron-emitting radionuclides is inversely proportional to the distance of DNA nucleotides from the decay site; and thus is very sensitive to changes in the local conformation of the DNA. Analysis of the frequency of DNA breaks, or radioprobing, gives valuable information about the local DNA structure. More than 10 years ago, we demonstrated the feasibility of radioprobing using a DNA-repressor complex with a known structure. Herein, we used radioprobing to study the conformation of DNA in complex with the tumor suppressor protein 53 (p53). Several structures of p53-DNA complexes have been solved by X-ray crystallography. These structures, obtained with the p53 DNA binding domain, a truncated form, laid the groundwork for understanding p53-DNA interactions and their relation to p53 functions. However, whether all observed stereochemical details are relevant to the native p53-DNA complex remains unclear. A common theme of the crystallographic structures is the lack of significant bending in the central part of the DNA response element. In contrast, gel electrophoresis and electron microscopy data showed strong DNA bending and overtwisting upon binding to the native p53 tetramer. METHODS: To analyze DNA in complex with p53, we incorporated (125)I-dCTP in two different positions of synthetic duplexes containing the consensus p53-binding site. RESULTS: The most significant changes in the break frequency distributions were detected close to the center of the binding site, which is consistent with an increase in DNA twisting in this region and local DNA bending and sliding. CONCLUSIONS: Our data confirm the main results of the studies made in solution and lay a foundation for systematic examination of interactions between DNA and native p53 using (125)I radioprobing.


Subject(s)
DNA/chemistry , DNA/metabolism , Molecular Probe Techniques , Nucleic Acid Conformation , Tumor Suppressor Protein p53/metabolism , Base Sequence , DNA/genetics , Humans , Iodine Radioisotopes/metabolism , Models, Molecular , Protein Conformation , Tumor Suppressor Protein p53/chemistry
20.
Cell Cycle ; 11(10): 1883-7, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22544321

ABSTRACT

Wip1 is a stress-response phosphatase that negatively regulates several tumor suppressors, including p53. In a sizeable fraction of tumors, overexpression or amplification of Wip1 compromises p53 functions; inhibition of Wip1 activity is an attractive strategy for improving treatment of these tumors. However, over half of human tumors contain mutations in the p53 gene or have lost both alleles. Recently, we observed that in cancer cells lacking wild type p53, reduction of Wip1 expression was ineffective, whereas, surprisingly, overexpression of Wip1 increased anticancer drug sensitivity. The increased sensitivity resulted from activation of the intrinsic pathway of apoptosis through increased levels of the pro-apoptotic protein Bax and decreased levels of the anti-apoptotic protein Bcl-xL. We showed that interaction of Wip1 and the transcription factor RUNX2, specifically through dephosphorylation of RUNX2 phospho-S432, resulted in increased expression of Bax. Interestingly, overexpression of Wip1 increased drug sensitivity only in the p53-negative tumor cells while protecting the wild type p53-containing normal cells from drug-induced collateral injury. Here, we provide evidence that Wip1 overexpression decreases expression of Bcl-xL through negative regulation of NFκB activity. Thus, Wip1 overexpression increases the sensitivity of p53-negative cancer cells to anticancer drugs by separately affecting Bax and Bcl-xL protein levels.


Subject(s)
Apoptosis/drug effects , Phosphoprotein Phosphatases/metabolism , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/metabolism , bcl-X Protein/metabolism , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , Core Binding Factor Alpha 1 Subunit/metabolism , Humans , NF-kappa B/metabolism , Phosphoprotein Phosphatases/genetics , Phosphorylation , Promoter Regions, Genetic , Protein Phosphatase 2C , Transcription Factor RelA/metabolism , Tumor Suppressor Protein p53/genetics , bcl-2-Associated X Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL