Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(26): 260403, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38996292

ABSTRACT

We demonstrate how to incorporate a catalyst to enhance the performance of a heat engine. Specifically, we analyze efficiency in one of the simplest engine models, which operates in only two strokes and comprises of a pair of two-level systems, potentially assisted by a d-dimensional catalyst. When no catalysis is present, the efficiency of the machine is given by the Otto efficiency. Introducing the catalyst allows for constructing a protocol which overcomes this bound, while new efficiency can be expressed in a simple form as a generalization of Otto's formula: 1-(1/d)(ω_{c}/ω_{h}). The catalyst also provides a bigger operational range of parameters in which the machine works as an engine. Although an increase in engine efficiency is mostly accompanied by a decrease in work production (approaching zero as the system approaches Carnot efficiency), it can lead to a more favorable trade-off between work and efficiency. The provided example introduces new possibilities for enhancing performance of thermal machines through finite-dimensional ancillary systems.

2.
Phys Rev E ; 109(6-1): 064146, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39020883

ABSTRACT

Navigating the intricacies of thermal management at the quantum scale is a challenge in the pursuit of advanced nanoscale technologies. To this extent, theoretical frameworks introducing minimal models mirroring the functionality of electronic current amplifiers and transistors, for instance, have been proposed. Different architectures of the subsystems composing a quantum thermal device can be considered, tacitly bringing drawbacks or advantages if properly engineered. This paper extends the prior research on thermotronics, studying a strongly coupled three-subsystem thermal device with a specific emphasis on a third excited level in the control subsystem. Our setup can be employed as a multipurpose device conditioned on the specific choice of internal parameters: heat switch, rectifier, stabilizer, and amplifier. The exploration of the detuned levels unveils a key role in the performance and working regime of the device. We observe a stable and strong amplification effect persisting over broad ranges of temperature. We conclude that considering a three-level system, as the one directly in contact with the control temperature, boosts output currents and the ability to operate our devices as a switch at various temperatures.

3.
Sensors (Basel) ; 23(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37514660

ABSTRACT

The early identification of micro-defects in ferromagnetic elements such as steel wire ropes significantly impacts structures' in-service reliability and safety. This work investigated the possibility of detecting mechanically introduced discontinuities using different magnetic sensors without magnetization of the tested object with a strong external field. This is called the passive magnetic testing method, and it is becoming increasingly popular. This research used differential sensors (measuring differences in field values at the nanotesla level) and absolute sensors (enabling the measurement of the magnetic field vector module or its components at the microtesla level). Each measurement result obtained from the sensors allowed for detecting discontinuities in the line. The problem to be solved is the quantitative identification of changes in the metallic cross-section of a rope.

4.
Sensors (Basel) ; 23(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36772497

ABSTRACT

In this paper, the useability of feedforward and recurrent neural networks for fusion of data from impulse-radar sensors and depth sensors, in the context of healthcare-oriented monitoring of elderly persons, is investigated. Two methods of data fusion are considered, viz., one based on a multilayer perceptron and one based on a nonlinear autoregressive network with exogenous inputs. These two methods are compared with a reference method with respect to their capacity for decreasing the uncertainty of estimation of a monitored person's position and uncertainty of estimation of several parameters enabling medical personnel to make useful inferences on the health condition of that person, viz., the number of turns made during walking, the travelled distance, and the mean walking speed. Both artificial neural networks were trained on the synthetic data. The numerical experiments show the superiority of the method based on a nonlinear autoregressive network with exogenous inputs. This may be explained by the fact that for this type of network, the prediction of the person's position at each time instant is based on the position of that person at the previous time instants.


Subject(s)
Neural Networks, Computer , Radar , Humans , Aged , Gait , Walking , Delivery of Health Care
5.
Sensors (Basel) ; 22(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36365863

ABSTRACT

This article presents diagnostic tests of wire ropes using passive magnetic methods. The study used two types of wire ropes with different constructions and diameters. Defects of various depths were modeled in the ropes, which reflected the degree of loss of metallic cross-section. After a series of measurements, a correlation was observed between the amplitude of the module signal and the degree of damage to the rope. The signals were recorded with the advantage of the SpinMeter-3D magnetometer. The obtained results were subjected to the extraction of features, the analysis of which allowed the damage to be identified.

6.
Int J Occup Med Environ Health ; 31(6): 723-739, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30484440

ABSTRACT

OBJECTIVES: Abnormalities in the timing and course of spermatozoa capacitation and hyperactivation underlie common pathologies related to male infertility. Recent data shows that low frequency electromagnetic waves may influence cell membrane potential and permeability. It is therefore possible that low frequency electromagnetic waves could affect the maturation and motility processes of spermatozoa. The 43-kHz wave generator was used for modeling the impact of environmental exposure to low frequency electromagnetic radiation on human sperm. MATERIAL AND METHODS: Sperm samples were gathered from 103 fertile, healthy men aged 25-30 years old and performed computer-assisted sperm analysis. After initial examination, each participant's semen sample was divided into 2 aliquots (control and experimental) and placed in separate automated incubators. The samples constituting the experimental group were placed into the exposure system that emitted 43-kHz electromagnetic waves. Sperm motility was assessed at 3 h, 12 h and 24 h. RESULTS: Exposure to a 43-kHz radio frequency increased the percentage of sperm in progressive motility by up to 5.8% and the velocity of said sperm by up to 2 µm/s. Moreover, the total number of hyperactivated spermatozoa was significantly increased in the semen exposed to the electromagnetic signal. CONCLUSIONS: In vivo environmental exposure to 43-kHz waves may promote the development of infertility related to premature capacitation outside of the vaginal tract. Exposing semen to this particular frequency may also boost the capacitation and hyperactivation of spermatozoa in vitro, prior to conducting assisted reproductive therapies.Int J Occup Med Environ Health 2018;31(6):723-739.


Subject(s)
Electromagnetic Radiation , Environmental Exposure/adverse effects , Infertility, Male/etiology , Sperm Motility/physiology , Sperm Motility/radiation effects , Spermatozoa/physiology , Spermatozoa/radiation effects , Adult , Humans , Male , Pilot Projects , Poland
7.
Ann Agric Environ Med ; 24(1): 13-18, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28378967

ABSTRACT

Electromagnetic radiation (EMR) emitting from the natural environment, as well as from the use of industrial and everyday appliances, constantly influence the human body. The effect of this type of energy on living tissues may exert various effects on their functioning, although the mechanisms conditioning this phenomenon have not been fully explained. It may be expected that the interactions between electromagnetic radiation and the living organism would depend on the amount and parameters of the transmitted energy and type of tissue exposed. Electromagnetic waves exert an influence on human reproduction by affecting the male and female reproductive systems, the developing embryo, and subsequently, the foetus. Knowledge concerning this problem is still being expanded; however, all the conditionings of human reproduction still remain unknown. The study presents the current state of knowledge concerning the problem, based on the latest scientific reports.


Subject(s)
Electromagnetic Radiation , Radiation Exposure/adverse effects , Reproduction/radiation effects , Humans
8.
Sci Rep ; 6: 34327, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27686417

ABSTRACT

We consider Bayesian estimate of static magnetic field, characterized by a prior Gaussian probability distribution, in systems of a few electron quantum dot spins interacting with infinite temperature spin environment via hyperfine interaction. Sudden transitions among optimal states and measurements are observed. Usefulness of measuring occupation levels is shown for all times of the evolution, together with the role of entanglement in the optimal scenario. For low values of magnetic field, memory effects stemming from the interaction with environment provide limited metrological advantage.

9.
Sci Rep ; 5: 8975, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25754905

ABSTRACT

We present a scheme for encoding and decoding an unknown state for CSS codes, based on syndrome measurements. We illustrate our method by means of Kitaev toric code, defected-lattice code, topological subsystem code and 3D Haah code. The protocol is local whenever in a given code the crossings between the logical operators consist of next neighbour pairs, which holds for the above codes. For subsystem code we also present scheme in a noisy case, where we allow for bit and phase-flip errors on qubits as well as state preparation and syndrome measurement errors. Similar scheme can be built for two other codes. We show that the fidelity of the protected qubit in the noisy scenario in a large code size limit is of , where p is a probability of error on a single qubit per time step. Regarding Haah code we provide noiseless scheme, leaving the noisy case as an open problem.

10.
Phys Rev Lett ; 112(14): 140507, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24765937

ABSTRACT

The scenario of remote state preparation with a shared correlated quantum state and one bit of forward communication [B. Dakic et al., Nat. Phys. 8, 666 (2012)] is considered. Optimization of the transmission efficiency is extended to include general encoding and decoding strategies. The importance of the use of linear fidelity is recognized. It is shown that separable states cannot exceed the efficiency of entangled states by means of "local operations plus classical communication" actions limited to 1 bit of forward communication. It is proven however that such a surprising phenomena may naturally occur when the decoding agent has limited resources in the sense that either (i) has to use decoding which is insensitive to the change of the coordinate system in the plane in question (which is the natural choice if the receiver does not know the latter) or (ii) is forced to use bistochastic operations which may be imposed by physically inconvenient local thermodynamical conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...