Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38251127

ABSTRACT

Global energy sources are limited, and energy requirements are ever-increasing due to the demand for developments in human life and technology. The environmentally friendly direct formic acid fuel cell (DFAFC) is an attractive electronic device due to its clean energy. In a DFAFC, an anodic catalyst plays an important role concerning the oxidation pathway and activity. In the present study, palladium (Pd) was synthesized by synchrotron X-ray photoreduction using various irradiation times (0.5-4 min) to control the particle size. An acid-treated carbon nanotube (A-CNT) was used as the template for Pd deposition. The A-CNT and Pd/A-CNT were examined using scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy to reveal the microstructural characteristics. Electrochemical evaluation, electrocatalytic activity, and the DFAFC performance of so-obtained Pd/A-CNT catalysts were investigated. The experiment's results showed that the Pd/A-CNT-2 (i.e., synchrotron photoreduction for 2 min) underwent a direct formic acid oxidation pathway and possessed a high ECSA value of 62.59 m2/gPd and superior electrocatalytic activity of 417.7 mA/mgPd. In a single DFAFC examination, the anodic Pd/A-CNT-2 catalyst had a power density of 106.2 mW/mgPd and a relatively long lifetime of 2.91 h. Pd/A-CNT-2 anodic catalysts synthesized by surfactant-free synchrotron X-ray photoreduction with a rapid processing time (2 min) are potential candidates for DFAFC applications.

2.
Sci Rep ; 13(1): 13621, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37604839

ABSTRACT

Nanoadditives can be used to enhance lubricating properties of engine oils. Although many additives have been developed, molybdenum disulfide and carbon nanotubes have attracted significant attention. In this study, we demonstrate that hybrid nanostructures based on these unique materials (MoS2/CNTs) positively affect engine oil lubricating properties. Hybrid nanostructures were produced via wet chemical synthesis in impinging jet reactor. This method is characterized by easy scalability and possible continuous operation, which are crucial in material commercialization. The application of 0.5 wt% suspension exhibited the best results, reducing the friction coefficient at the engine operating temperature by up to 26%. Nanoadditives protected the lubricated parts, causing their wear to be considerably lower than the base oil. The effect of nanoadditives on the quality of exhaust gases was also investigated, which has not yet been researched. The application of the oil with MoS2/CNT reduced the emissions of solid particles in the gasoline engine exhaust gas. The total volume of particles in the exhaust gas was reduced by 91% and 49% under idling and load-running conditions. This research showed that MoS2/CNTs can be successfully used as nanoadditives in engine oils for improving tribological properties, enhancing anti-wear performance, and reducing particle emissions in exhaust gas.

3.
Biosens Bioelectron ; 237: 115511, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37429147

ABSTRACT

Scientific interest in the investigation and application of multifunctional nanomaterials in medical diagnostics has been increasing. The employment of magnetocatalytic immunoconjugates as both analyte-capturing agents and enzyme-like catalytic labels may enable rapid preconcentration and determination of relevant antigens. In this work, we synthesized and comprehensively characterized two types of noble metal-decorated magnetic nanocubes (MDMCs) which were subsequently applied in the one-step, sandwich nanozyme-linked immunosorbent assay (NLISA). Magnetic cores allow for rapid separation from complex samples of biological origin. The catalytically active shell composed of Au-decorated Pt or Ru can effectively mimic the activity of horseradish peroxididase, retaining at the same time the ability to form stable bioconstructs through self-assembly of thiolated ligands. As a result, hybrid multifunctional nanoparticles were synthesized and used to detect C-reactive protein (CRP) in serum samples. We have also paid considerable attention to the mechanistic studies of the formation of sandwich immunocomplexes with nanoparticle labels by means of immunoenzymatic methods and surface plasmon resonance. Analytical parameters of the Pt-MDMCs-labeled NLISA (detection limit LOD = 0.336 ng mL-1, recovery = 98.0%, linear response window covering two logarithmic units) turned out to be superior to the classical, one-step ELISA based on a horseradish peroxidase. In addition, our method offers further possibility of sensitivity adjustment by changing the parameters of magnetic preconcentration, together with good long-term stability of MDMCs conjugates and their good resistance to common interferences. We believe that the proposed simple synthetic protocol will guide a new approach to applying metal-decorated magnetic nanozymes as versatile and multifunctional labels for application in subsequent pre-analytical analyte concentration and immunoassays towards clinical applications.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , C-Reactive Protein , Colorimetry , Biosensing Techniques/methods , Immunoassay/methods , Gold , Magnetic Phenomena
4.
Nanotoxicology ; 17(4): 310-337, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37262345

ABSTRACT

Reports on the cytotoxicity of diamond nanoparticles (ND) are ambiguous and depend on the physicochemical properties of the material and the tested cell lines. Thus, the aim of this research was to evaluate the influence of thirteen types of diamond nanoparticles, differing in production method, size, and surface functional groups, on their cytotoxicity against four tumor cell lines (T98G, U-118 MG, MCF-7, and Hep G2) and one non-tumor cell line (HFF-1). In order to understand the dependence of diamond nanoparticles on physicochemical properties, the following parameters were analyzed: viability, cell membrane damage, morphology, and the level of intracellular general ROS and mitochondrial superoxide. The performed analyses revealed that all diamond nanoparticles showed no toxicity to MCF-7, Hep G2, and HFF-1 cells. In contrast, the same nanomaterials were moderately toxic for the glioblastoma T98G and U-118 MG cell lines. In general, the effect of the production method did not influence ND toxicity. Some changes in cell response after treatment with modified nanomaterials were observed, with the presence of carboxyl groups having a more detrimental effect than the presence of other functional groups. Although nanoparticles of different sizes caused similar toxicity, nanomaterials with bigger particles caused a more pronounced effect.


Subject(s)
Breast Neoplasms , Carcinoma, Hepatocellular , Glioblastoma , Liver Neoplasms , Nanoparticles , Humans , Female , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Glioblastoma/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Nanoparticles/toxicity , Nanoparticles/chemistry , Cell Line, Tumor , Cell Survival
5.
Int J Nanomedicine ; 18: 2821-2838, 2023.
Article in English | MEDLINE | ID: mdl-37273285

ABSTRACT

Introduction: Diamond nanoparticles are considered to be one of the most cytocompatible carbon nanomaterials; however, their toxicity varies significantly depending on the analysed cell types. The aim was to investigate the specific sensitivity of endothelial cells to diamond nanoparticles dependent on exposure to nanoparticles. Methods: Diamond nanoparticles were characterized with Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS). Toxicity of diamond nanoparticles was assessed for endothelial cells (HUVEC), human mammary epithelial cells (HMEC) and HS-5 cell line. The effect of diamond nanoparticles on the level of ROS, NO, NADPH and protein synthesis of angiogenesis-related proteins of endothelial cells was evaluated. Results and Discussion: Our studies demonstrated severe cell type-specific toxicity of diamond nanoparticles to endothelial cells (HUVEC) depending on nanoparticle surface interaction with cells. Furthermore, we have assessed the effect on cytotoxicity of the bioconjugation of nanoparticles with a peptide containing the RGD motive and a serum protein corona. Our study suggests that the mechanical interaction of diamond nanoparticles with the endothelial cell membranes and the endocytosis of nanoparticles lead to the depletion of NADPH, resulting in an intensive synthesis of ROS and a decrease in the availability of NO. This leads to severe endothelial toxicity and a change in the protein profile, with changes in major angiogenesis-related proteins, including VEGF, bFGF, ANPT2/TIE-2, and MMP, and the production of stress-related proteins, such as IL-6 and IL-8. Conclusion: We confirmed the presence of a relationship between the toxicity of diamond nanoparticles and the level of cell exposure to nanoparticles and the nanoparticle surface. The results of the study give new insights into the conditioned toxicity of nanomaterials and their use in biomedical applications.


Subject(s)
Endothelial Cells , Nanoparticles , Humans , Endothelial Cells/metabolism , Reactive Oxygen Species/metabolism , NADP , Nanoparticles/toxicity , Nanoparticles/chemistry , Cell Line
6.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36012139

ABSTRACT

Nucleic acid extraction and purification are crucial steps in sample preparation for multiple diagnostic procedures. Routine methodologies of DNA isolation require benchtop equipment (e.g., centrifuges) and labor-intensive steps. Magnetic nanoparticles (MNPs) as solid-phase sorbents could simplify this procedure. A wide range of surface coatings employs various molecular interactions between dsDNA and magnetic nano-sorbents. However, a reliable, comparative evaluation of their performance is complex. In this work, selected Fe3O4 modifications, i.e., polyethyleneimine, gold, silica, and graphene derivatives, were comprehensively evaluated for applications in dsDNA extraction. A family of single batch nanoparticles was compared in terms of morphology (STEM), composition (ICP-MS/MS and elemental analysis), surface coating (UV-Vis, TGA, FTIR), and MNP charge (ζ-potential). ICP-MS/MS was also used to unify MNPs concentration allowing a reliable assessment of individual coatings on DNA extraction. Moreover, studies on adsorption medium (monovalent vs. divalent ions) and extraction buffer composition were carried out. As a result, essential relationships between nanoparticle coatings and DNA adsorption efficiencies have been noticed. Fe3O4@PEI MNPs turned out to be the most efficient nano sorbents. The optimized composition of the extraction buffer (medium containing 0.1 mM EDTA) helped avoid problems with Fe3+ stripping, which improved the validity of the spectroscopic determination of DNA recovery.


Subject(s)
Magnetite Nanoparticles , Nucleic Acids , Adsorption , Magnetic Phenomena , Magnetite Nanoparticles/chemistry , Solid Phase Extraction/methods , Tandem Mass Spectrometry
8.
Sci Rep ; 11(1): 7977, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846412

ABSTRACT

Graphene-based nanohybrids are good candidates for various applications. However, graphene exhibits some unwanted features such as low solubility in an aqueous solution or tendency to aggregate, limiting its potential applications. On the contrary, its derivatives, such as graphene oxide (GO) and reduced graphene oxide (RGO), have excellent properties and can be easily produced in large quantities. GO/RGO nanohybrids with porphyrins were shown to possess great potential in the field of photocatalytic hydrogen production, pollutant photodegradation, optical sensing, or drug delivery. Despite the rapid progress in experimental research on the porphyrin-graphene hybrids some fundamental questions about the structures and the interaction between components in these systems still remain open. In this work, we combine detailed experimental and theoretical studies to investigate the nature of the interaction between the GO/RGO and two metal-free porphyrins 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) and 5,10,15,20-tetrakis(4-hydroxyphenyl) porphyrin (TPPH)]. The two porphyrins form stable nanohybrids with GO/RGO support, although both porphyrins exhibited a slightly higher affinity to RGO. We validated finite, Lerf-Klinowski-type (Lerf et al. in J Phys Chem B 102:4477, 1998) structural models of GO ([Formula: see text]) and RGO ([Formula: see text]) and successfully used them in ab initio absorption spectra simulations to track back the origin of experimentally observed spectral features. We also investigated the nature of low-lying excited states with high-level wavefunction-based methods and shown that states' density becomes denser upon nanohybrid formation. The studied nanohybrids are non-emissive, and our study suggests that this is due to excited states that gain significant charge-transfer character. The presented efficient simulation protocol may ease the properties screening of new GO/RGO-nanohybrids.

9.
RSC Adv ; 11(55): 34996-35010, 2021 10 25.
Article in English | MEDLINE | ID: mdl-35494738

ABSTRACT

Developing functional materials from biomass is a significant research subject due to its unique structure, abundant availability, biodegradability and low cost. A series of chitosan-lignin (CL) composites were prepared through a hydrothermal method by varying the weight ratio of chitosan and lignin. Subsequently, these CL composites were combined with titania (T) to form a nanocomposite (T/CL) using sol-gel and hydrothermal based methods. T/CL nanocomposites exhibited improved photocatalytic performance in comparison with sol-gel and hydrothermally prepared pristine titania (SGH-TiO2), towards the selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (Bnald) under UV (375 nm) and visible light (515 nm). More specifically, the 75T/CL(25 : 75) nanocomposite (a representative photocatalyst from the 75T/CL nanocomposite series) showed very high selectivity (94%) towards Bnald at 55% BnOH conversion under UV light. Whereas, SGH-TiO2 titania exhibited much lower (68%) selectivity for Bnald at similar BnOH conversion. Moreover, the 75T/CL(25 : 75) nanocomposite also showed excellent Bnald selectivity (100%) at moderate BnOH conversion (19%) under visible light. Whereas, SGH-TiO2 did not show any activity for BnOH oxidation under visible light. XPS studies suggest that the visible light activity of the 75T/CL(25 : 75) nanocomposite is possibly related to the doping of nitrogen into titania from chitosan. However, according to UV-visible-DRS results, no direct evidence pertaining to the decrease in band-gap energy of titania was found upon coupling with the CL composite and the visible light activity was attributed to N-doping of titania. Overall, it was found that T/CL nanocomposites enhanced the photocatalytic performance of titania via improved light harvesting and higher selectivity through mediation of active radical species.

10.
Nanomaterials (Basel) ; 10(9)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957616

ABSTRACT

Molybdenum disulfide (MoS2) can be an excellent candidate for being combined with carbon nanomaterials to obtain new hybrid nanostructures with outstanding properties, including higher catalytic activity. The aim of the conducted research was to develop the novel production method of hybrid nanostructures formed from MoS2 and graphene oxide (GO). The nanostructures were synthesized in different weight ratios and in two types of reactors (i.e., impinging jet and semi-batch reactors). Physicochemical analysis of the obtained materials was carried out, using various analytical techniques: particle size distribution (PSD), thermogravimetric analysis (TGA), FT-IR spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Due to the potential application of materials based on MoS2 as the catalyst for hydrogen evolution reaction, linear sweep voltammetry (LSV) of the commercial MoS2, synthesized MoS2 and the obtained hybrid nanostructures was performed using a three-electrode system. The results show that the developed synthesis of hybrid MoS2/GO nanostructures in continuous reactors is a novel and facile method for obtaining products with desired properties. The hybrid nanostructures have shown better electrochemical properties and higher onset potentials compared to MoS2 nanoparticles. The results indicate that the addition of carbon nanomaterials during the synthesis improves the activity and stability of the MoS2 nanoparticles.

11.
Nanomaterials (Basel) ; 10(6)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545577

ABSTRACT

Nowadays heavy metals are among the higher environmental priority pollutants, therefore, the identification of new, effective, reusable and easy-to-handle adsorbent materials able to remove metal ions from water is highly desired. To this aim, in this work for the first time, sulfonated pentablock copolymer (s-PBC, Nexar™) membranes and s-PBC/graphene oxide (GO) nanocomposite membranes were investigated for the removal of heavy metals from water. Membranes were prepared by drop casting and their chemical, structural and morphological properties were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic mechanical analysis (DMA) and small-angle X-ray scattering (SAXS). The adsorption abilities and adsorption kinetics of both the polymer and the s-PBC/GO nanocomposite were investigated for the removal of different heavy metal ions (Ni2+, Co2+, Cr3+ and Pb2+) from aqueous solutions containing the corresponding metal salts at different concentrations. The investigated s-PBC membrane shows a good efficiency, due to the presence of sulfonic groups that play a fundamental role in the adsorption process of metal ions. Its performance is further enhanced by embedding a very low amount of GO in the polymer allowing an increase by at least three times of the adsorption efficiencies of the polymer itself. This can be ascribed to the higher porosity, higher roughness and higher lamellar distances introduced by GO in the s-PBC membrane, as evidenced by the SEM and SAXS analysis. Both the polymeric materials showed the best performance in removing Pb2+ ions.

12.
Curr Cancer Drug Targets ; 20(1): 47-58, 2020.
Article in English | MEDLINE | ID: mdl-31736445

ABSTRACT

BACKGROUND: Graphene oxide (GO) has unique physical and chemical properties that can be used in anticancer therapy - especially as a drug carrier. Graphene oxide, due to the presence of several hybrid layers of carbon atoms (sp2), has a large surface for highly efficient drug loading. In addition, GO with a large number of carboxyl, hydroxyl and epoxy groups on its surface, can charge various drug molecules through covalent bonds, hydrophobic interactions, hydrogen bonds and electrostatic interactions. OBJECTIVE: The aim of our work was to evaluate the possibility of future use of graphene oxide as an anticancer drug carrier. METHODS: In this paper, we present GO synthesis and characterization, as well as a study of its biological properties. The cytotoxic effect of well-defined graphene oxide was tested on both carcinoma and non-malignant cells isolated from the same organ, which is not often presented in the literature. RESULTS: The performed research confirmed that GO in high concentrations (> 300 µgmL-1) selectively decreased the viability of cancer cell line. Additionally, we showed that the GO flakes have a high affinity to cancer cell nucleus which influences their metabolism (inhibition of cancer cell proliferation). Moreover, we have proved that GO in high concentrations can cause cell membrane damage and generate reactive oxygen species on a low level mainly in cancer cells. CONCLUSION: The proposed GO could be useful in anticancer therapy. A high concentration of GO selectively causes the death of tumor cells, whereas GO with low concentration could be a potential material for anticancer drug loading.


Subject(s)
Antineoplastic Agents/administration & dosage , Graphite/administration & dosage , Lung Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Carriers , Graphite/pharmacology , Humans , Lung Neoplasms/pathology , Reactive Oxygen Species/metabolism , Suspensions
13.
Nanomaterials (Basel) ; 10(1)2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31877714

ABSTRACT

Infrared (IR) shielding materials are commonly used for different applications, such as smart windows or optical filters. Infrared radiation is responsible for about 50% of the energy coming from the sun. During a hot summer or cold winter a lot of energy is needed to keep the optimal temperature inside buildings and means of transport. To reduce the heat transmission and save energy IR shielding materials can be used as coatings made of polymer composites. Graphene oxide (GO) and its reduced forms have interesting IR absorption properties and might be used as a filler in a polymer matrix for IR shielding applications. Graphene oxide can be reduced by different methods. Depending on the reduction method reduced graphene oxide (rGO) with a different content of oxygen can be obtained exhibiting different properties. In this work we propose new polymer nanocomposites with poly(vinyl alcohol) as the matrix and 0.1 wt.% addition of graphene materials with different oxygen content to be used for IR shielding applications. The results show that the properties of the graphene filler strongly influence the infrared shielding properties of the obtained nanocomposites. The best IR shielding properties were obtained for the composites where rGO with the lowest oxygen content was used.

14.
Chemphyschem ; 20(8): 1054-1066, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30839147

ABSTRACT

Non-covalent nanohybrids composed of cationic 5,10,15,20-tetra(4-trimethylammoniophenyl)porphyrin tetra(p-toluenesulfonate) (TMAP) and the graphene oxide sheets were prepared under two pH values (6.2 vs. 1.8). The TMAP molecule was positively charged, regardless of the pH value during preparation. However, protonation of the imino nitrogens increased the overall charge of the porphyrin molecule from +4 to +6 (TMAP4+ and TMAP6+ ). It was found that at acidic pH, interaction of TMAP6+ with GO was largely suppressed. On the other hand, results of FTIR, Raman spectroscopy, thermogravimetric analysis, atomic force microscopy (AFM) and elemental analysis confirmed effective non-covalent functionalization of graphene oxide with cationic porphyrin at pH 6.2. The TMAP4+ -GO hybrids exhibited well defined structure with a monolayer of TMAP4+ on the GO sheets as confirmed by AFM. Formation of the ground-state TMAP4+ -GO complex in solution was monitored by the red-shift of the porphyrin Soret absorption band. This ground-state interaction between TMAP4+ and GO is responsible for the static quenching of the porphyrin emission. Fluorescence was not detected for the nanohybrid which indicated that a very fast deactivation process had to take place. Ultrafast time-resolved transient absorption spectroscopy clearly demonstrated the occurrence of electron transfer from the photoexcited TMAP4+ singlet state to GO sheets, as proven by the formation of a porphyrin radical cation.

15.
Nanoscale Res Lett ; 13(1): 116, 2018 Apr 23.
Article in English | MEDLINE | ID: mdl-29687296

ABSTRACT

One of the most promising methods against drug-resistant bacteria can be surface-modified materials with biocidal nanoparticles and nanocomposites. Herein, we present a nanocomposite with silver nanoparticles (Ag-NPs) on the surface of graphene oxide (GO) as a novel multifunctional antibacterial and antifungal material. Ultrasonic technologies have been used as an effective method of coating polyurethane foils. Toxicity on gram-negative bacteria (Escherichia coli), gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis), and pathogenic yeast (Candida albicans) was evaluated by analysis of cell morphology, assessment of cell viability using the PrestoBlue assay, analysis of cell membrane integrity using the lactate dehydrogenase assay, and reactive oxygen species production. Compared to Ag-NPs and GO, which have been widely used as antibacterial agents, our nanocomposite shows much higher antimicrobial efficiency toward bacteria and yeast cells.

16.
J Phycol ; 53(4): 880-888, 2017 08.
Article in English | MEDLINE | ID: mdl-28523651

ABSTRACT

We present topographical and nanomechanical characterization of single Didymosphenia geminata stalk. We compared the samples before and after adsorption of metal ions from freshwater samples. Transmission electron microscopy studies of single stalk cross-sections have shown three distinct layers and an additional thin extra coat on the external layer (called "EL"). Using scanning electron microscopy and atomic force microscopy (AFM), we found that topography of single stalks after ionic adsorption differed significantly from topography of pristine stalks. AFM nanoindentation studies in ambient conditions yielded elastic moduli of 214 ± 170 MPa for pristine stalks and 294 ± 108 MPa for stalks after ionic adsorption. Statistical tests showed that those results were significantly different. We conducted only preliminary comparisons between ionic adsorption of several stalks in air and in water. While the stalks with ions were on average stiffer than the pristine stalks in air, they became more compliant than the pristine stalks in water. We also heated the stalks and detected EL softening at 50°C ± 15°C. AFM nanoindentation in air on the softened samples yielded elastic moduli of 26 ± 9 MPa for pristine samples and 43 ± 22 MPa for stalks with absorbed metal ions. Substantial decrease of the EL elastic moduli after heating was expected. Significantly different elastic moduli for the samples after ionic adsorption in both cases (i.e., for heated and nonheated samples), as well as behavior of the stalks immersed in water, point to permanent structural EL changes due to ions.


Subject(s)
Diatoms/physiology , Metals/metabolism , Adsorption , Biomechanical Phenomena , Diatoms/cytology , Diatoms/ultrastructure , Elastic Modulus , Ions/metabolism , Kinetics , Microscopy, Atomic Force , Microscopy, Electron, Scanning
17.
J Pharm Biomed Anal ; 127: 193-201, 2016 Aug 05.
Article in English | MEDLINE | ID: mdl-26997161

ABSTRACT

The presented studies aimed at investigation of the effect of CdSeS/ZnS quantum dots (QDs) stabilized with hyperbranched polyglycidol and its carboxylated derivative on adenocarcinomic human alveolar basal epithelial cells (A549). The first stage of studies concerned the modification of quantum dots with both types of the tested polymers with the use of pyridine as an intermediate agent. Subsequently, cytotoxic effect of the prepared nanoparticles was examined after various incubation time using MTT test (cell metabolic activity assay). Our studies revealed that CdSeS/ZnS with a diameter of 6nm, which were stabilized with hyperbranched polymers do not penetrate into cells, even after prolonged incubation time. Moreover, the cytotoxic effect of the tested QDs was observed over a range of tested concentrations (5-90µM of Cd(2+)). It was confirmed that tested nanoparticles had significant influence on cell culture viability. The examined cytotoxic effect of the tested quantum dots was dependent on the type of polymer applied and the experiments indicated, that the one bearing carboxylic moieties is more toxic to A549 cells.


Subject(s)
Cadmium Compounds/toxicity , Fluorescent Dyes/toxicity , Propylene Glycols/chemistry , Quantum Dots/toxicity , Selenium Compounds/toxicity , Sulfides/toxicity , Zinc Compounds/toxicity , A549 Cells , Cadmium Compounds/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Fluorescent Dyes/chemistry , Humans , Particle Size , Quantum Dots/chemistry , Selenium Compounds/chemistry , Sulfides/chemistry , Surface Properties , Zinc Compounds/chemistry
18.
Nanotechnology ; 26(49): 495101, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26567596

ABSTRACT

The aim of this work was to carry out comparative studies on the peroxidase-like activity of gold nanoparticles (AuNPs) stabilized with low molecular weight hyperbranched polyglycidol (HBPG-OH) and its derivative modified with maleic acid residues (HBPG-COOH). The influence of the stabilizer to gold precursor ratio on the size and morphology of nanoparticles obtained was checked, and prepared nanoparticles were characterized by means of transmission electron microscopy and UV-Vis spectroscopy. The results indicated the divergent effect of increasing the concentration of stabilizers (HBPG-OH or HBPG-COOH) on the size of the nanostructures obtained. The gold nanoparticles obtained were characterized as having intrinsic peroxidase-like activity and the mechanism of catalysis in acidic and alkaline mediums was consistent with the standard Michaelis-Menten kinetics, revealing a strong affinity of AuNPs with 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3, 3', 5, 5'-tetramethylbenzidine (TMB), and significantly lower affinity towards phenol. By comparing the kinetic parameters, a negligible effect of polymeric ligand charge on activity against various types of substrates (anionic or cationic) was indicated. The superiority of steric stabilization via the application of tested low-weight hyperbranched polymers over typical stabilizers in preventing salt-induced aggregation and maintaining high catalytic activity in time was proved. The applied hyperbranched stabilizers provide a good tool for manufacturing gold-based nanozymes, which are highly stable and active over a wide pH range.


Subject(s)
Gold/chemistry , Gold/metabolism , Metal Nanoparticles/chemistry , Peroxidase/metabolism , Propylene Glycols/chemistry , Hydrogen-Ion Concentration , Maleic Anhydrides , Osmolar Concentration , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...